
Extended UTxO in production: techniques,

trade-offs and a search of better balance

Ilya Oskin
i.oskin@spectrumlabs.fi

November 2023

Abstract

In recent years many novel smart-contract platforms such as
Ergo [3], Cardano and Nervos adopted the concept of UTxO intro-
duced in Bitcoin to express state of the ledger. In combination with
a scripting language that allows to express predicates on transaction
it forms a powerful system of programmable money, a.k.a. Extended
UTxO.

In practice, compared to the more adopted 1 systems based on
accounts, eUTxO offers a different trade-off between the amount of on-
chain computations and the amount of data that has to be transmitted
to express state transitions. Thus, coming with its own unique set of
approaches, trade-offs and bottlenecks.

In this article we develop an intuition of how to think in eUTxO,
analyze our experience of implementing incrementally complex on-
chain protocols in terms of eUTxO and try to find a better alternative
to eUTxO in terms of balance between on-chain and off-chain.

1 Structure

In section 2 we build an intuition about Extended UTxO paradigm by re-
inventing it from scratch and comparing to a more imperative Account
paradigm. Then, in section 3, we outline most challenging problems and
limitations developers face when building real-word applications on eU-
TxO. Finally, we discuss an alternative framework in which we address
those limitations in section 3.4.

1At the moment as this article is being written.

1

mailto:i.oskin@spectrumlabs.fi

2 Extended UTxO in essence

As the word “extended” suggests, eUTxO is a continuation of UTxO model
introduced in Bitcoin [4]. UTxO relies on immutable data structures
(UTxO) that encode pieces of ledger state, those structures can only be
created or eliminated. Each structure has a specific locker attached to it.
To eliminate a eUTxO, one must prove that he has the key to the locker,
typically a signature to prove ownership of the private key corresponding
to the public key used a locker.

First attempt to extend this framework with programmability capabili-
ties was done in Bitcoin Script. Simple non Turing-complete scripting lan-
guage allows to define more sophisticated conditions under which a UTxO
can be eliminated: e.g. require signatures corresponding to multiple public-
keys, require that the time of transaction is greater than some specified
timestamp etc.

TX

Contract

State 1

Contract

State 2
Consume Produce

Execute

Figure 1: A transaction in UTxO system.

While sufficient for simple applications, Bitcoin Script doesn’t allow to
define more sophisticated logic required for most useful protocols. The lim-
iting factor is not the lack of Turing-completeness, but the lack of compos-
ability, which stems from limited access to the context of the transaction
within which the locker script is executed. As shown in [2] an ability to
access transaction’s inputs (UTxOs that the transaction eliminates) and
outputs (UTxOs that the transaction creates) in scripts is sufficient to emu-
late Turing-completeness even if the scripting language itself is not Turing-
complete (i.e. individual scripts don’t have loops). Thus, extensive context
opened the door for encoding arbitrary on-chain logic by allowing scripts
to validate discrete state transitions which can be composed into possibly
infinite chain of state transitions 2.

2

TX

Validate whole TX

Contract

State 1

Validate whole TX

Contract

State 2
Consume Produce TX

Contract

State N
ProduceConsume ...

Figure 2: Continous chain of state transitions verified each time the chain
extends.

2.1 eUTxO versus Programmable Accounts

It is common to compare eUTxO with its counterpart based on the notion
of programmable accounts. Programmable accounts were introduced earlier
in [1] and share many similarities with eUTxO. State of the ledger is still
comprised of data structures called accounts, each account is owned by a user
identified with a public key or a program (smart contract). The difference
with eUTxO is that accounts are mutable anf thus, the programmability
model is different.

Static

TX

Contract 1

State 1-1

Consume

Contract 2

State 2-1

Contract 3

State 3-1

Contract 1

State 1-2

Contract 2

State 2-2

Contract 3

State 3-2

Produce

Ref:0x1a

Ref:0x2a

Ref:0x3a

Figure 3: Inputs and outputs of a transaction are defined statically in eU-
TxO.

While eUTxO scripts serve only as validators of state transitions com-
puted statically 3 and depend only on transaction’s local context, most
of the stuff with accounts happen in runtime: whole state of the ledger is
involved in transactions and is resolved when the transaction is executed
(being added to a block) and corresponding mutations to that state are com-
puted based on that states dynamically 4. An ability for one smart-contract

3

to call another in runtime enables composabilty, making it possible for many
different protocols to interoperate.

Static

Call(args)

Contract 1

Addr::Call(args)

TX

State

Modify

Addr::Call(args)

Contract 2

State

Modify

Contract N

State

Modify

Figure 4: Side effects of a transaction in the programmable accounts model
are computed in runtime.

Although the two frameworks discussed above are just different ways of
expressing the same things, they come with different trade-offs in terms of
utilization of scarce network resources (data and computations) and deter-
minism of computations.

We will use an artificial example of an “petstore” encoded on-chain to
illustrate that eUTxO and programmable accounts are two opposite extreme
cases of the “resources-determenism” trade-off. The state of the petstore is
composed of a balance of the store, and a set of counters indicating how
many pets of each type are available 1. To buy a pet for the fixed price the
corresponding amount must be deposited to the store.

Balance Integer
NumCats Integer
NumDogs Integer

Table 1: Structure of perstore.

In the case of programmable account the smart-contract will receive the
type of the desired pet as an input, fixed amount will be withdrawn from
buyer’s account and deposited to store’s balance, the number of available

4

pets of the specified type will be decreased by one, the number of corre-
sponding pets on buyer’s will be increased by one.

In the case of eUTxO, initial and final state are known by the time the
transaction is formed. Validator script of the store looks up for the next
output containing the store’s state, checks that the balance of the store
was increased by the fixed amount of coins, the counter of the desired pet
was decreased by one and the UTxO is guarded with the same script, so
the chain of state transitions can be continually validated. Then it looks for
buyer’s output and validates that it received one desired pet.

The example above demonstrates that in the case of account none of the
transaction effects are known until the transaction is actually executed, on
the other hand only the minimal amount of data has to be included into the
transaction and thus transmitted over the network.

In contrast, in the case of eUTxO, the initial and final states of the
petstore are computed in advance, and the validator script only verifies the
transition in runtime. The whole updated state of the petstore has to be
included into the transaction, although only part of it actually changed.

Runtime
computations

Data
Transmission

eUTxO

Accounts

Figure 5: eUTxO is deterministic while requires more data transmission.
Account approach is non-deterministic, but requires fewer data transmission.

3 Key challenges and techniques

eUTxO requires developers to think in terms of state transitions and valida-
tions. We will use real examples from now on to demonstrate what it means
on practice.

5

3.1 Continuation of states

Continuation of states is the basic technique when it comes to modelling
a persistent entity on-chain. We already touched that technique in the
petstore example, but omitted many important details. Now we will use
AMM liquidity pool [5] as a more realistic example.

Typically, an AMM pool stores two assets and supports three types of
operations:

� Deposit liquidity. Both assets in proportion corresponding to the cur-
rent price in the pool are deposited into it, in exchange pool emits
so-called LP tokens, which represent certain share of liquidity in the
pool.

� Redeem liquidity. LP tokens are returned to the pool, in exchange the
pool returns corresponding share of liquidity in both assets.

� Swap. Exchange one asset for another for the current price according
to constant product invariant.

A liquidity pool is a long-lasting entity which lives on-chain. A UTxO,
the only construct that we can use to model the pool on-chain, is in contrast
ephemeral, i.e. can only be spent once. So pool has to be modelled as a
continuation of UTxO, each encoding a discrete pool’s state.

To ensure the pool doesn’t split or leak its assets illegally during trans-
actions it is common to use a non-fungible token 6.

Pool Validator

State 1
TX

Pool Validator

State 2

Validator

Something Else

NFT

NFT

Figure 6: Pool state is uniquely identified with a non-fungible token. Val-
idator must check that the NFT always remains in the pool.

3.2 Shared state

One liquidity pool is used to serve thousands of operations from different
users.

6

Pool Validator

State 1
TX

Pool Validator

State 2

User PK

Payout

Figure 7: Transaction with AMM poool.

Most straightforward solution would be to perform all operations with
the pool directly as shown on 6. In reality, it is not practical. Because of
deterministic nature of eUTxO many transaction would refer the same pool
state in the event of spikes in demand. Because a UTxO can be spent one
once, this race condition would result in cancellation of many transactions.

Pool Validator

State 1

TX2

Pool Validator

State 2'

User PK'

Payout

TX1

Pool Validator

State 2

User PK

Payout

Figure 8: Transaction with AMM pool.

To tackle this issue, a two phase scheme is used on practice: user puts
base assets required for an operation into an order and commits it into
blockchain. Order’s validator script ensures the user gets the desired amount
of quote asset.

7

Another integral part of this scheme is an off-chain service that mon-
itors blockchain and executes orders against actual pool states. Usually,
because of the security and stability concerns (off-chain agents may re-order
orders to maximize own profits) there is an open network of these agents.
Their normal working cycle to race with other agents to submit transaction
faster, because many of the transactions they produce interfere and thus
are mutually exclusive. Nevertheless, mutually exclusive transactions are
propagated in the network to some point anyway, utilizing its throughput
in a non-efficient way.

In the case of a DEX and most of the use-cases involving some shared
state extensively used by independent agents eUTxO incurs even more costs
(compared to imperative approach of Programmable Accounts) in terms of
utilization of network resources by requiring on-chain orders. It also incurs
additional implementation complexity by requiring developers to implement
off-chain services.

AMM Validation
Logic

Reserves:
289926.045231 SPF

18,120.02 USDT

Order
Validation

Logic

Input:
9000 SPF

User

Order
Validation

Logic

Input:
9000 SPF

User

AMM Validation
Logic

+

9
0
0
0

S
P
F

54
3.
97
 U
SD
T

Reserves:
298926.045231 SPF

17,576.05 USDT

Step 1: Publish Order Step 2: Execute Order

9
0
0
0

S
P
F

Flow of Value

AMM PoolAMM Pool

Order

Order

Figure 9: Two-pase scheme. Transaction publishing an order. Transaction
executing the order against AMM pool.

8

3.3 Aggregation and sharding

AMM pool is the most simplistic example of aggregation. It aggregates
liquidity from different liquidity providers in a continuous way: assets of the
same type are summed.

Cases involving aggregation of discrete units require more sophisticated
techniques. Consider a Liquidity Book approach: liquidity is distributed
across discrete bins with fixed width. Liquidity can be exchanged at fixed
price within each bin. Each bin represents a single price point and the
difference between two consecutive bins is the bin step.

Pools of this type have to track state of tens on thousands of bins. That’s
why large pools can no longer be modelled as a single UTxO, otherwise they
simply won’t fit into transaction size limits.

Pool Validator

State of Liqw Bins 0-5

p
=
0
.
1

p
=
0
.
2

p
=
0
.
3

p
=
0
.
4

p
=
0
.
5

p
=
0
.
6

Pool Validator

State of Liqw Bins 0-5

p
=
0
.
7

p
=
0
.
8

Pool Validator

State of Liqw Bins 0-5

......

Figure 10: Liqudiity book is split into a possibly infinite number of shards.

In this case the technique of state sharding is useful. A Liquidity Book
pool is modelled as an infinite number of discrete UTxOs, each tracking a
particular range of bins.

On practice this approach has some limitations.

� The larger the amount of a single swap is, the more shards of the pool
are required to execute transaction. In extreme cases all of them may
not fit into one transaction and would require a series of transactions.

� In the case if a liquidity provider wants to provide liquidity in a wide
range of bins, again, more shards of the pool are required to execute
transaction. And again, a chain of transactions is required.

Although possible, and even practical depending on transaction size lim-
its in the target network, this approach requires significant amount of data to
be transmitted over the wire (in transactions and then in blocks) compared
to typical transaction size limits (from 16kb to 1mb in different eUTxO
blockchains).

9

3.4 Towards a better balance

We are now going to discuss how existing eUTxO approach can be improved
to be more accessible to developers, utilize network resources efficiently,
while still remaining secure and deterministic.

We argue, that one significant limitation of eUTxO that leads to inef-
ficient utilization of network resources is the requirement to include full
version of new state into transaction even if modifications are minimal.

To eliminate this, it would be beneficial to support operations of copying
the previous state with modifications of only the required set of fields 11.
Then, only new data would have to be included into transaction, transmitted
over the wire and go through decentralized consensus.

Output of Contract 1

Static

State 1-2

Compute State 1-2 in runtime

Contract 1

State 1-1
State.Copy(newNumCats=9) TX

Figure 11: Resulting state is computed using the input state and the updated
data.

Although useful to reduce data transmission, this modification alone
would introduce another issue – the identifier (which is a hash of UTxO
and transaction) of a fresh UTxO would be known only after confirmation
of a block it got into. This would make it impossible to implement efficient
transaction chaining and would reduce throughput of DEXes built on it
significantly.

Another factor that blows up complexity and requires spamming network
with similar mutually exclusive transactions is static dispatch of transaction
inputs.

To tackle that in our construction we introduce identifier of UTxO com-
posed of:

1. Stable part, which is derived from ID of the transaction that produced
it initially and its index in the transaction outputs

2. And ephemeral part that represents version of the UTxO and is derived
as a hash of the transaction that produced its latest version and its

10

index in the transaction outputs. Then we allow to optionally refer to
a UTxO input using only stable part of identifier.

TxId = H(Tx)
StableId = H(TxId × I)
Version = H(TxId × I)

Ref = StableId × Version

Table 2: Structure of UTxO reference.

The resulting hybrid construction allows developers to balance trade-off
between on-chain and off-chain computations themselves depending on the
use case. At the same time the construction preserves local reasoning about
the transaction because it still operates on its explicit inputs.

Output of Contract 1
Static

State 1-2Ref:State 1-? Call(args)

Call(args)

Produce

Contract 1

State 1-1

Contract 2

State 2-1

TX

Contract 2

State 2-2

Figure 12: Hybrid-UTxO transaction.

11

References

[1] Vitalik Buterin. Ethereum white paper: A next generation smart con-
tract & decentralized application platform. 2013.

[2] Alexander Chepurnoy, Vasily Kharin, and Dmitry Meshkov. Self-
reproducing coins as universal turing machine, 2018.

[3] Ergo Developers. Ergo: A resilient platform for contractual money, 2019.

[4] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. May
2009.

[5] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. SoK:
Decentralized exchanges (DEX) with automated market maker (AMM)
protocols. ACM Computing Surveys, 55(11):1–50, feb 2023.

12

	Structure
	Extended UTxO in essence
	eUTxO versus Programmable Accounts

	Key challenges and techniques
	Continuation of states
	Shared state
	Aggregation and sharding
	Towards a better balance

