
Spectrum Bloom: A self-developing, sustainable,

eUTxO-native framework for decentralized finance

Ilya Oskin
i.oskin@spectrumlabs.fi

Aug 2023

Abstract

Over the past few years eUTxO blockchains such as Ergo and Car-
dano have seen rapid development of decentralized exchanges (DEXes).
Following the success of early EVM-based DEXes multiple projects
building on top of novel eUTxO model, with ErgoDEX being the pi-
oneer, managed to deliver quality protocols. However, all of these
early attempts suffer from lack of transparency, composability and
poor performance. In this work we make an attempt to analyze those
weaknesses and address them in a new protocol based on principles of
decentralization, openness, transparency and sustainability.

1 Preliminaries

1.1 DeFi primitives

Decentralized finance (DeFi) consists of heterogeneous modules, each imple-
menting some financial tool as a small (or not so small) protocol. We refer
to such modules as to “primitives”, supposing that they form an ecosystem
and can potentially be composed. Some of these primitives are discussed
below.

Automated Market Maker. An integral part of the decentralized
finance (DeFi) ecosystem, decentralized exchanges (DEXs) with automated
market maker (AMM) protocols [6]. AMM uses mathematical models to set
the price and match buyers and sellers rather than merely matching buy
and sell orders, as in traditional order-books. AMM is best in markets with
low liquidity. One of the features of AMM is that liquidity providers add
assets to the exchange for a fee, and the market benefits from an increase in

1

mailto:i.oskin@spectrumlabs.fi

liquidity, smaller latency, limited price slippage, and less market volatility
when using this additional liquidity.

Order Book. A similar construction to the one widely used on cen-
tralized exchanges. Orders are waiting for other orders to be matched, or
for a cancellation. There are the following two types of orders – “buy” (i.e.
buy base asset for quote), “sell” (i.e. sell base asset for quote). Order-book
DEX has the advantage of working best for those pairs with high liquidity.

Algorithmic Stablecoin. An algorithmic stablecoin protocol that be-
haves like an autonomous bank that buys and sells stablecoins for a price in
a range that is pegged to a target price [7].

1.2 Scope of the work

In this work we analyze high level approach to designing decentralized ex-
change systems. Thus, we abstract away from concrete implementations of
financial primitives like AMM, Order Book or Stablecoin Bank, and will
refer to them as to abstract “liquidity sources”.

The primary goal of this work is to design a protocol applicable to any
exchange type and interoperable with any DeFi primitive instantiation by
default with only one requirement: openness of the target primitive imple-
mentation.

1.3 System Model

We assume a UTxO based blockchain that supports multi-stage contracts
(extended-UTxO) [2] and multi-token functionality. In our model Decen-
tralized Exchange (DEX) is a protocol that consists of two pillars:

1. On-Chain. On-Chain part is defined in terms of unspent transaction
outputs (UTxOs) and validators guarding them. Therefore, state of
the DEX is encoded solely in ledger.

2. Off-Chain. A set of event handlers that, upon receiving of event,
emit a transaction triggering state transition in on-chain part.

1.3.1 Liquidity pooling

We assume that in the context of eUTxO model all forms of liquidity pooling
(e.g. AMM, Order Book, Stablecoin Bank etc.) are represented as a single
UTxO guarded with a specific validator script that assures all transactions
applied to the pool are legitimate.

2

{

 "boxId": "a921717d1f31dbc54f293e44805e611355847c39c5cfceb8f46d8f49d421a634",

 "settlementHeight": 1076525,

 "address": "3gb1RZucekcRdda82TSNS4FZSREhGLoi1FxGDmMZdVeLtYYixPRviEdYireoM9RqC6jmU[..]",

 "assets": [

 {

 "tokenId": "cd57cdb9c457589df31e7ca01871eaf7ee005cfdea4f75c8ec30df3a617936ad",

 "amount": 1,

 "name": null,

 "decimals": null,

 },

 {

 "tokenId": "9a06d9e545a41fd51eeffc5e20d818073bf820c635e2a9d922269913e0de369d",

 "amount": 293478792958,

 "name": "SPF",

 "decimals": 6,

 },

 {

 "tokenId": "03faf2cb329f2e90d6d23b58d91bbb6c046aa143261cc21f52fbe2824bfcbf04",

 "amount": 1758902,

 "name": "SigUSD",

 "decimals": 2,

 }

]

}

Unique PoolID AMM Pool Math
(Validator)

Pair:
SPF/SigUSD

AMM
Pool

Reserves:
293478.792958/17589.02

Figure 1: Illustration of a raw UTxO in Ergo [3] blockchain mapping to an
AMM liqudity pool encoded into it.

1.4 Structure

The rest of the paper is structured as follows: in Section 2 we first describe
initial “classical” approach to designing a DEX and discuss its weaknesses.
Then in Section 3 we iteratively address those weaknesses in a novel frame-
work. Section 4 is dedicated to detailed explanation and extension of the
“Autonomous Account” introduced in Section 3.

2 Classical DEX design

eUTxO pioneers faced a challenge when first tried to port protocols such as
Uniswap [4]: while EVM implementations allowed its users to transact with
liquidity pools directly from clients, on eUTxO such scenario was extremely
impractical. The root of the problem lays in the nature of eUTxO, unlike
Account model it requires that all inputs of a transaction are determinis-
tic. Therefore, direct transaction with shared, atomic on-chain entities like
aggregated liquidity pool would result in race conditions (on practice that
means that only one order can succeed in a certain time window, others
must be refunded and recreated).

A classical approach to model a DEX protocol is to synchronize user
access to a shared liquidity pool via on-chain orders which are then picked
up, ordered and executed by off-chain bots shortly after. On-chain order is
encoded into a UTxO carrying some input value (e.g. some amount of base
asset in case of limit sell order) and guarded with a validator script that

3

ensures that the order is executed at a fair price provided by concrete liq-
uidity pool at the time of actual order execution. Validator script guarding
an order should contain concrete specification of a pool it is intended to be
applied to, otherwise it won’t be able to read fair price from it.

AMM Validation
Logic

Reserves:
289926.045231 SPF

18,120.02 USDT

Order
Validation

Logic

Input:
9000 SPF

User

Order
Validation

Logic

Input:
9000 SPF

User

AMM Validation
Logic

+

9
0
0
0

S
P
F

54
3.
97
 U
SD
T

Reserves:
298926.045231 SPF

17,576.05 USDT

Step 1: Publish Order Step 2: Execute Order

9
0
0
0

S
P
F

Flow of Value

AMM PoolAMM Pool

Order

Order

Figure 2: A diagram that shows how users interact with aggregated liquidity
pools via orders. At first step a client publishes an order moving some of
his funds into it, at the second step random off-chain operator matches this
order with a proper pool and executes the deal.

2.1 Limitations of classical design

Lack of Transparency. The need for off-chain execution creates a separate
market with its own incentives for actors willing to serve the protocol. In the
worst case there is a monopoly of project team exclusively having permission
to do off-chain execution. Best practice currently is to allow permissionless
off-chain execution. On the open market a number of agents compete to
execute each order to earn execution fees, but not only that. Another way
of taking profit from execution is to do what’s called “Frontrunning” or
“Blockchain Extractable Value” [1]. BEV allows to extract additional value
from users, beyond what they are willing to pay as fees. Due to opaque
nature of execution users neither know who will handle their order in the
end, nor do they have any control over the execution.

4

As a result lack of transparency leads to incentive model that does not
always reward those actors who serve the protocol in the best way.

Inefficiency. On-chain orders require an extra transaction. As a result
user has to cover fees for both order publishing transaction and execution
transaction. In the case of order execution failure (e.g. due to price slippage
or expiration) an additional transaction is required to redeem funds locked
in the order.

Poor Composability. Orders are specialized to work with concrete
implementation of a liquidity pool to be able to properly check correctness
of execution. This renders it impossible to compose orders with different
sources of liquidity (e.g. liquidity pools of the same pair on different DEXes).

3 Spectrum Bloom Framework

We are now presenting a novel DEX framework by gradually improving the
classical approach.

3.1 Explicit Order Routing

We modify classical construction in a way that off-chain executors are now
required to register their public keys, those keys will serve as unique identi-
fiers. Users are now able to explicitly specify the set of off-chain operators
allowed to execute their orders.

To implement this we append the following condition to the validator
script: ∃PKi : verify(σ, PKi, H(T)) ∧ PKi ∈ R, where PKi – public key
of i− th executor, verify(σ, PK,m) → 0|1 – function that verifies signature
σ against public key PK and message m, H(T) – cryptographic hash of
transaction, R – set of executors allowed to execute the order.

With off-chain executors being publicly identifiable clients can now track
their performance off-chain (e.g. detect MEV, measure response time, etc.)
and render rating tables to inform users. This way the profitability func-
tion of executors can be adjusted off-chain without the need to modify the
protocol by simply applying different rating functions on clients.

3.2 Green Orders

We are now eliminating the need for on-chain orders by encoding them into
a message that is relayed to the desired executors off-chain. We call such off-
chain orders “green” because of their zero on-chain overhead. The structure
of the message is described in Table 1 below.

5

OrderBody = OrderParams×Nonce
Message = OrderBody× σ

Table 1: Message structure. The user authorizes the order by signing its
contents and attaching the proof σ. OrderParams – parameters of the order,
e.g. quote and base asset, price, etc., Nonce – monotonically increasing
counter to prevent replay attacks.

In order to be able to actually execute off-chain orders some kind of
on-chain entity that can validate execution and permit the release of user
(without the need to interact with user) funds is required. At this point we
introduce Autonomous Account (AA) over eUTxO – an on-chain entity that
is able to read order message, validate execution, and release the amount
of user funds required to execute the deal. To work with AA the user has
to deposit some funds that he is willing to trade into it.

In result of this modification we reduce the amount of data stored on-
chain and cut fees required previously to place on-chain order.

3.3 Universal Orders

We are now introducing universally composable orders that can be fulfilled
from any liquidity source by default. Universal composition is something
that is difficult to achieve with market or limit orders because of the re-
quirement to validate price in the liquidity source. Therefore, we employ
the principle of Dutch auction proposed in [5] to construct a new order type
that would not depend on liquidity source structure.

6

AMM Validation
Logic

Reserves:
289926.045231 SPF

18,120.02 USDT

User

AA Validation
+ Order

Validation

Tradable
Assets:
20000 SPF

User

AMM Validation
Logic

+

9
0
0
0

S
P
F

54
3.
97
 U
SD
T

Reserves:
298926.045231 SPF

17,576.05 USDT

Step 0: Publish Order Step 1: Execute Order

S
i
g
n

+

P
u
b
l
i
s
h

Order
Messsage

Order
Messsage

AA Validation
+ Order

Validation

Tradable
Assets:
11000 SPF

Flow of Value

Transmission of data
over the wire

AA AA

AMM PoolAMM Pool

Figure 3: A modified construction. Step 0 creates almost zero overhead
(just transmission of data over the wire). At step 1 the order is supplied to
AA, execution is validated and required value is released.

Unlike limit orders, which always execute at their limit price, Dutch
orders execute at a price that depends on the time of its inclusion in a
block. The order starts at a price that is estimated to be better for the
trader than the current estimated market price – for example, if the current
market price is 1.00 USDT per X, a sell order may start at a price of 1.05
USDT per X. The order’s price then decays over time until it hits the
worst price the swapper would be willing to accept (e.g. 9.95 USDT per X).
The decaying nature of Dutch orders creates a competitive market among
executors to find the best possible price for traders as soon as possible
while keeping some small profit margin for themselves. Off-chain executors
are incentivized to fill an order as soon as it is profitable for them to do so.
If they wait too long, they risk losing the order to another executor willing
to take a smaller profit.

7

Universally composable orders open the door for infinite number of liq-
uidity aggregation techniques that can be implemented by off-chain execu-
tors for their own profit. This way their rewarding function becomes even
more aligned with self-development of the protocol.

Order
Buy:1000 Djed

Base: SPF

AMM#2
SPF/Djed

OrderBook
SPF/Djed

Stablecoin
Bank

AMM#1
X/DjedUSD

AMM#0
SPF/X

250 Djed

50
 D
je
d

150 Djed

550 Djed

1000 X

Figure 4: An illustrative example of how one order can be atomically ful-
filled from a number of different liquidity sources to achieve better price.
Some complicated aggregation techniques can even involve routing of value
through intermediate pools.

In combination with transparent execution Dutch orders allow to dras-
tically decrease (if not eliminate at all) BEV (MEV) on the platform.

8

4 Autonomous Account: utility in DEXes and be-
yond

The Autonomous Account primitive can be useful not only in DEXes as we
showed previously, but in a much wider range of decentralized applications
that can benefit from serving user requests in a non-interactive way without
any on-chain overhead.

We are now showing how AA can be extended to support a dynamic set
of applications on eUTxO blockchains that support delegated validation
(i.e. allows to delegate validation from one script to another). Instead of
hard-coded logic responsible for validation of a specific request (order), AA
now stores just a set of script hashes approved by this account, each hash
corresponding to a specific validator that must be evaluated in the case
when corresponding application interacts with the account. The set of rules
can be updated by the user, e.g. when a new application needs to be enabled.
The API of modified AA is described in 4

Delegate Order Validation

AA Validation

Tradable
Assets:
20000 SPF

AA

Order
Validation

Order
Messsage

Figure 5: A modified construction of AA interoperable with an arbitrary
number of applications. The burden of order validation is now delegated to
an external script.

9

Appendix

NFT Unique account identifier
PKuser User’s public key used for authorization

{H(Vi)|0 < i < N} Set of validator hashes for enabled applications

Table 2: Data structure of AA.

Order Validation Rules We omit concrete order validation logic
Nonce consistency Upon each application of an order require

that NonceOrd = NonceAA

Nonce increment Upon each application of an order require
that Nonce′AA = NonceAA + 1

Valid withdrawal Upon receiving a request to withdraw funds
require that verify(σ, PKuser, H(T))

Table 3: Structure of AA validation logic. Order Validation Rules may be
modular as we point out in Section 4.

ExecRequest(H(Vi)) Check that validator with corresponding
hash H(Vi), where Vi – i’th supported
validator, is present in the transaction

Deposit(A) No specific validation is required
Withdraw(A, σ) Check that V ′ = V −A, where V – value

in AA before withdrawal, V ′ – value in AA
after withdrawal.
verify(σ, PKuser, H(T))

EnableApp(H(Vi), σ) verify(σ, PKuser, H(T))

DisableApp(H(Vi), σ) verify(σ, PKuser, H(T))

Table 4: API of Autonomous Account.

10

References

[1] Massimo Bartoletti and Roberto Zunino. A theoretical basis for
blockchain extractable value, 2023.

[2] Alexander Chepurnoy, Vasily Kharin, and Dmitry Meshkov. Self-
reproducing coins as universal turing machine, 2018.

[3] Ergo Developers. Ergo: A resilient platform for contractual money, 2019.

[4] Dan Robinson Hayden Adams, Noah Zinsmeister. Uniswap v2 core,
2019.

[5] Mark Toda Hayden Adams, Noah Zinsmeister. Uniswapx, 2023.

[6] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. SoK:
Decentralized exchanges (DEX) with automated market maker (AMM)
protocols. ACM Computing Surveys, 55(11):1–50, feb 2023.

[7] Joachim Zahnentferner, Dmytro Kaidalov, Jean-Frédéric Etienne, and
Javier Dı́az. Djed: A formally verified crypto-backed pegged algorithmic
stablecoin. Cryptology ePrint Archive, Paper 2021/1069, 2021. https:
//eprint.iacr.org/2021/1069.

11

https://eprint.iacr.org/2021/1069
https://eprint.iacr.org/2021/1069

	Preliminaries
	DeFi primitives
	Scope of the work
	System Model
	Liquidity pooling

	Structure

	Classical DEX design
	Limitations of classical design

	Spectrum Bloom Framework
	Explicit Order Routing
	Green Orders
	Universal Orders

	Autonomous Account: utility in DEXes and beyond

