
Spectrum: Cross-chain interoperability at scale

Spectrum Labs

March 2023

1 Introduction
Following the success of Bitcoin, many blockchain-based cryptocurrencies have been
developed and deployed. To meet different requirements in various scenarios, a great
number of heterogeneous blockchains have emerged. However, most of the presented
blockchain platforms are developed independently, therefore, they are designed for their
own use cases and are incompatible with each other. Hence, interoperability between
blockchains has become one of the key issues which prevents blockchain technology from
wide adoption.

With fair blockchain interoperability users can potentially conduct transactions
across different blockchain networks smoothly and without any intermediaries. This
guarantees a reduction in the fragmentation of the crypto ecosystem and opens up new
horizons and business models. Implementation of the blockchain interoperability proto-
col is challenging since different blockchains have different security solutions, consensus
algorithms and programming languages. An inaccurate solution can potentially increase
the possibility of attacks and create management challenges across different connected
networks.

The classic cross-chain interoperability solution is a trusted oracle that registers some
event on one blockchain and performs the required action on the other. Centralized
oracles provide fast and cheap transactions but lack a key feature – decentralization.
The liquidity of the protocol built on this approach is custodial which is a centralized
approach similar to CeFi when users deposit their funds to an exchange’s wallet.

Another common approach involves intermediate network consisting of a fixed num-
ber of hand-picked oracles to facilitate data transfer among multiple blockchains. The
consensus mechanism in such protocols is usually proof-of-authority or proof-of-stake,
hence, the wide range of potential validators are eliminated due to verification proce-
dures or high collateral and network moderation typically carried out by several dozen
of rarely alternating nodes. Moreover, a common practice is to store funds transferred
between blockchains on some kind of threshold wallets, which are generated by the par-
ticipants of the intermediate network. This results in all funds being controlled by a
fixed group of oracle operators. Such a system is also not truly decentralized.

Regarding the application scenarios, one of the most popular in the existing
blockchain interoperability proposals is an atomic token swap. However, atomic token
swapping protocols [1] are not self-inclusive enough to complete the tasks of cross-chain
decentralized applications with more complex activities than just token exchanges. The
reason is that the atomic swapping process does not have the ability to destroy a cer-
tain amount of assets in the source blockchain and re-create the same amount on the
target blockchain. Moreover, this process always requires a counterparty who is willing
to exchange tokens [2].

True blockchain interoperability requires the users and developers have the ability
to access information from one blockchain inside another without any additional efforts
from a third party. This is a complicated task, thus, before achieving a successfully

1



interoperable multi-blockchain system, many challenges must be overcome, such as scal-
ability when applying to a large-scale scenario [3].

The motivation of this paper is to describe the Spectrum protocol, which provides an
open, truly decentralized, secure and scalable cross-chain interoperability solution. The
Spectrum protocol is intended for both end-users and developers, who will be able to
implement their applications on top of the protocol to widespread the use of blockchain
technology in various business areas.

2 Related Work
Blockchain interoperability is promising but still faces various design challenges. There
have been many systematic researches regarding this issue and many famous authors
have discussed chain interoperability in general. Blockchain interoperability in the lit-
erature is usually classified into categories. Buterin [4] suggested centralized, sidechain-
s/relays, and hash locking. Belchior et al. [5] classified it into cryptocurrency-directed
approaches, blockchain engines, and blockchain connectors, Wang [6] proposed to group
it into chain-based interoperability, bridge-based interoperability, and dApp-based in-
teroperability.

2.1 Existing Interoperability Solutions
In this paper, we want to emphasize the benefits of the decentralization in the chain
interoperability mechanism, so we will not include the systematical-level study of all
existing approaches and will briefly discuss the classification proposed by Wang.

2.1.1 Chain-based Interoperability

Chain-based interoperability is aimed at public blockchains and uses atomic swaps as its
main mechanism to exchange information between different chains. Following the classi-
fication, there are three main approaches to implementing chain-based interoperability:
hash locking, trusted notary scheme and sidechain.

Hash Locking is an intermediary method that allows to validate or execute
blockchain transactions. Hashed Time Lock Contracts (HTLCs) were originally de-
veloped as an alternative to centralized switching and can be thought of as a distributed
commitment [7] able to fend off Byzantine adversary. It uses a hash time-locked system
to lock the transaction [8] which is similar to the concept of the cross-chain atomic swap.

From the technical point of view, the hash locking approach has some significant
drawbacks, for example, it must lock some assets during its opening phase for an es-
tablished transaction channel, thereby creating a race condition and, moreover, the
possibility of losing assets if a timeout occurs.

Trusted Notary Scheme is usually considered as the simplest way to achieve cross-
chain interoperability. The blockchain notary schemes can provide the functionalities of
timed proof of existence, whose proof can be used as further proof of ownership [9]. It
doesn’t require any additional changes in the underlying blockchains and uses a trusted
notary to verify the correctness and integrity of information transferred. A notary can
be a stand-alone authority or a group of trusted parties that monitor order books of the
connected chains and initiating transactions upon the occurrence of some valid events
or requests.

Well-known solutions using this technology are, for example, Herdius [10] and
Bifrost [11]. In practice, the most appropriate way to achieve interoperability using
a notary scheme is to combine it with other methods, as it is done in the Interledger [12]
which combines it with a sidechain.

2



Sidechain is the most promising approach in this category. Sidechain can add new
functionalities, namely, security and privacy to the existing blockchains, making possible
a tokens synchronization and additional data transfer between chains [13]. The essential
feature of the sidechain is that it’s design always takes into consideration the structure
and the consensus of each connected blockchain, but none of the mainchains are aware
of the presence of a sidechain. This is achieved by utilizing a two-way peg scheme [14]
which uses a relay routine for a bidirectional hooking. An important consequence of this
approach is that sidechains can be designed in a decentralized manner and have their
own consensus protocols.

Using a two-way pegs introduces a level of centralization, however, there are solutions
which uses a federated two-way pegs where single authority is replaced by a group of
trusted individuals selected in a trustworthy manner.

State-of-the-art sidechain platforms are Loom [15], Liquid [16] and Proof-of-
Authority (PoA) networks [17]. There also exists a lot of ongoing projects since this
technology is innovative and in demand by the blockchain industry.

Summing it up, a practical way to apply chain-based interoperability methods to
current mainstream blockchain systems is to combine them together. Most existing
solutions are designed primarily to exchange assets, however blockchain technology is
much wider in its applications, and it’s better to focus on transaction interoperation be-
tween different chains in practical implementations and effectively use all these promising
approaches.

2.1.2 Bridge-based Interoperability

Bridge-based interoperability aims to create a connection component between homo-
geneous and heterogeneous blockchains. Solutions in this field are more complex and
typically support the extension of smart contracts which allows developers to design and
deploy their own logic thereby expanding the interoperability applications. Bridge-based
interoperability can be implemented in two main forms: trusted relay and blockchain
engine.

Trusted Relay is a very native approach where trusted parties share transactions
between different blockchains. Relay schemes replicate block information of the source
blockchain via verifiable smart contracts within a target blockchain to allow the target
blockchain to verify the existence of data on the source blockchain without requiring
trust in a centralized entity [4]. There are many developing relay schemes: BTC Re-
lay [18], PeaceRelay [19], etc. State-of-the art projects are: Hyperledger Cactus [20],
Testimonium [21] and Tesseract [22]. All these solutions support complex use case and
are highly usable and reliable, however, still not fully decentralized [6].

Blockchain Engine also provides a relay among the connected blockchains. It is
based on a shared infrastructure which support different layers and services including
network, consensus, incentive, etc. Requirements of multi-layer supports is essential,
thus, most existing blockchain engine-based solutions are still in the stage of proof of
concept or under active development. Most significant projects are: Polkadot [23],
Cosmos [24], WanChain [25], and ARK [26].

All bridge-based solutions provide convenience for end-users since they don’t need
to know what happens in the bridge. In general, trusted relays are much more simple
and adopted to handle chain interoperability, however, they usually utilize mechanisms
similar to the notary schemes which also leads to a certain degree of centralization.

2.1.3 dApp-based Interoperability

Presence of well functioning decentralized applications (dApps) is significant in the
blockchain ecosystem, so dApps should be interoperable as well and this is the goal

3



of dApp-based interoperability. Each dApp cannot ensure semantic interoperability,
and it’s essential to develop the minimum semantic that must be supported by each
application to achieve interoperability among dApps. dApp-based blockchain interop-
erability protocols in the literature are typically classified as: blockchain of blockchains,
blockchain adapters and blockchain agnostic protocols.

Blockchain of Blockchains is a platform that allows developers to construct cross-
chain dApps where each blockchain functions as an independent one. It is similar to the
sidechain idea but differs in implementation. Sidechains are typically aimed at atomic
swaps among the homogeneous blockchains where all actions should be coordinated by
the mainchain. Blockchain of blockchains solutions typically requires a second layer of
blockchain (mainchain) to record the activities that happen on each subchain which can
be heterogeneous [6]. There are several projects where blockchain of blockchains concept
is applied for different scenarios: Overledger [27], HyperService [28], SMChain [29] and
etc.

Blockchain Adapter handles the interoperability by providing an interface for the
end-users to runtime selection, smart contracts, etc. Most significant project in this
category are PleBeuS [30] and smart contracts move protocol [31].

Blockchain Agnostic Protocol: refers to a single platform allowing multiple
blockchains to co-exist, enabling cross-chain or cross-blockchain communication between
arbitrarily distributed ledgers. Blockchain agnosticism provides its end-users various
options to pick their optimal blockchain and provide the capabilities for cross-chain
operations. Several agnostic-based technologies have been described in the literature:
ILPv4 [32], Gravity [33], SuSy [34] and etc. All these solutions are flexible and has great
potential, although most of them are focused on the general design of the prototype and
do not grant backward compatibility.

Although dApp-based blockchain interoperability is very promising, most of the so-
lutions in this category are either in early stages of development or lack a practical
implementation with criteria to evaluate their effectiveness and efficiency.

2.1.4 Discussion

All of the interoperability approaches described above have their strengths and weak-
nesses. However, the chain-based interoperability approaches, especially sidechains,
are well-established and benefits from extensive research and improvements in design.
Sidechains have two important pros that will help to increase the widespread adoption
of blockchain technology in various business areas:

• Having their own consensus mechanisms, sidechains can process transactions effi-
ciently and reduce transaction fees for users.

• Taking into consideration the structure and the consensus of each connected
blockchain sidechains allow dApps to expand their ecosystem.

The main cons of the existing sidechain protocols is a centralization and poor security
guaranties of the consensus. The disadvantages of centralization are obvious:

• A system is not sustainable when it depends on a single party.

• If the trustee goes down, unfinished swaps can appear frozen halfway.

• A malicious trustee can censor transactions.

• A malicious trustee can perform a man-in-the-middle attack by sending an inac-
curate data.

4



Almost the same deficiencies exist for a semi-centralized protocols, where only a few
dozen individuals act as validators. Such “decentralization” is very conditional as it is
difficult to meet the requirements to become a validator, furthermore, malicious valida-
tors can easily cooperate to successfully attack.

Thus, we come to the conclusion that the scalable practical implementation of the
truly decentralized system with a provably-secure consensus protocol is the main step
towards wide practical usage of sidechains and bringing their benefits into cross-chain
interoperability.

3 Goals
To overcome the outlined problems of the existing protocols the resulted Spectrum
protocol must satisfy the following properties:

1. Decentralization. The system should be highly decentralized.

2. Interoperability. The system should be able to support a large number of het-
erogeneous blockchains.

3. Openness. The system should allow anyone to participate in consensus per-
missionlessly. Protocol should be fully open-source and all participants will be
encouraged by the incentives system.

4. Consensus Scalability. The system should be able to operate normally while
maintaining sufficiently large consensus groups consisting of hundreds of active
validators on each connected blockchain.

5. Operational Scalability. The system should scale linearly with the number of
supported blockchains.

6. Security. The system should be able to withstand Sybil attacks.

7. Sustainability. The system should be able to tolerate faults of particular con-
nected blockchains.

8. Upgradability. The system should allow to add new blockchains into list of
supported over time.

To achieve our goals we will combine the best practices from the approaches that are
already in use in the chain-based interoperability solutions. To eliminate the existing
bottlenecks, we will supplement them with own-developed improvements which we will
emphasize and describe in details in the following sections.

4 System Model
In this section we will describe the main components and general assumptions which is
essential to conceptualize and construct the Spectrum protocol.

4.1 Security Model Preliminaries
We consider a semi-synchronous setting where protocol participants have a somewhat
accurate common notion of the elapsed time and the network has an upper bound on
the message delay, which is not known to the participants and is used as a security
parameter.

5



We also assume that our model operates in the dynamic availability setting [35],
where an arbitrary (but upper-bounded) number of the consensus members may not be
fully operational, e.g., due to network problems, reboots or software updates that affect
some of their local resources including their network interface and clock.

Time and Slots. We consider a setting where time is divided into discrete units
called slots. Each slot slr is indexed by an integer r ∈ {1, 2, ..}, and the ledger associates
one time slot with at most one block. All actions of protocol participants necessary for
its correct execution are also associated with specific slots. The largest units of time in
the protocol are epochs, each consisting of R slots.

Synchrony. A common assumption in known blockchains with a semi-synchronous
setting is that all participants are equipped with roughly synchronized clocks and have
access to the global clock setup for the synchronization. An existing synchronization
techniques are inapplicable to the standard model used for the analysis of Nakamoto-
style consensus protocols, thus, there are no strong security guarantees in such a model
in the case where the agreement on the current slot is replaced by the assumption of
potentially unsynchronized local clocks that proceed at roughly the same speed.

We adopt a provably secure approach to global clock synchronization in the dynamic
participation setting [36]. This approach assumes that members of the initial consensus
group have access to local clocks and any discrepancies between parties’ local time
are insignificant in comparison with the slot duration. This is still a typical approach,
however, the key feature is an imperfect version of the clock functionality used as a global
setup. It allows parties to advance to a next epoch even before every honest member
has finished with his current epoch. Once in an epoch, participants synchronize their
clocks based on public blockchain data. Therefore, this mechanism ensures that all
parties, both active and those who later join the protocol, can synchronize with other
participants and will remain synchronized as long as they faithfully follow the protocol.

Random Oracle. We assume that an ideal random oracle is available to each
member of the consensus. Random oracle models a function H : {0, 1}∗ → {0, 1}l, which
samples a uniformly random string from the {0, 1}l in response to some query, while
any repeated queries are answered consistently.

Security Configuration. We consider an untrustworthy network environment that
allows for adversarial-controlled message delays and immediate adaptive corruption.
Namely, we allow the adversary A to selectively delay any messages sent by an honest
party for up to ∆net slots and corrupt parties without delay.

The Spectrum protocol is executed by a set of nodes N , where each node n ∈ N :

• Is associated with a unique wallet holding a stake of tokens sn.

• Is able to generate key-pairs (PK,SK) without trusted public key infrastructure.

• Is able to sign messages sign : (SK,m)→ σ.

• Is able to verify signatures verify : (σ, PK,m)→ 0|1.

• Has access to a random oracle H.

We assume that at any time t a subset V ⊆ N of nodes can be controlled by an
adversary and are considered faulty. Byzantine nodes can divert from the protocol and
collude to attack the system while the remaining honest nodes follow the protocol.

4.2 External Systems
We also assume multiple independent distributed systems S1, . . . , SK with underlying
ledgers L1, . . . , LK as defined in [37]. For each ledger Lk, k ∈ K there is a process Pk that
can influence the state evolution of the underlying ledger Lk by committing a transaction

6



TXk into it. We extend the model defined in [37] by assuming that all ledgers allow
for execution of simple predicates upon validation of transactions: verify : C → 0|1,
where C is a context that contains description of state the transaction interacts with.
There is also a function desc : TXk → DESCTXk that maps transaction TXk to some
description, e.g. specifying the transaction value, recipient address, etc. For each Sk

there is a corresponding functionality unit Fk
ConnSys that allows any node equipped with

the unit to interact with Sk. Each node n ∈ N is equipped with at least one such
functionality unit and at most K functionality units.

4.3 Transaction Ledger
We adopt the definition of transaction ledger from [38]. A protocol Π implements a
robust transaction ledger, provided that Π is divided into blocks that determine the
order in which transactions are incorporated into the ledger. Each block in this model
is assigned to a specific time slot and the ledger must satisfy the following properties:

1. Persistence. Once a node of the system proclaims a certain transaction TX as
stable, the remaining nodes, if queried, will either report TX in the same position
in the ledger or will not report as stable any transaction in conflict to TX. Here
the notion of stability is a predicate that is parameterized by a security parameter
Kf, specifically, a transaction is declared stable if and only if it is in a block that
is more than Kf blocks deep in the ledger.

2. Liveness. If all honest nodes in the system attempt to include a certain trans-
action then, after time expires corresponding to Uc slots (called the transaction
confirmation time), all nodes, if queried and responding honestly, will report the
transaction as stable.

5 System Design
This section presents Spectrum protocol design starting from a naive approach based
on Practical Byzantine Fault Tolerance (PBFT) [39] and gradually addressing the chal-
lenges. Our protocol is largely inspired by Ouroboros protocols family [40], [35], [36],
therefore, we will use some of their core ideas and concepts.

5.1 Strawman Design: PBFTNetwork
For simplicity we begin with a notarization protocol based on PBFT and then iteratively
refine it into the Spectrum protocol.

PBFTNetwork assumes that a fixed consensus group of n = 3f + 1 nodes has been
pre-selected upfront and at most f of these nodes are Byzantine. The PBFT protocol
is designed in such a way that there is no need to trust each individual notary, but only
two-thirds of the set. This approach has proved its reliability in practice and has been
widely used in various blockchain protocols for many years.

At any given moment of time, one of the nodes is the leader who observes the events
on the connected blockchains, batch them and initiate a notarization round within the
consensus group. All validators verify the proposed batch by checking for relevant
updates on the connected chains. Upon successful verification each node signs the batch
with a secret key and sends the signature to the leader.

Liveness and safety of the PBFTNetwork is guaranteed under the simplifying as-
sumptions already mentioned above that at most f nodes are Byzantine. However, the
assumption of a fixed trusted committee is unrealistic for open decentralized systems.
Moreover, as PBFT consensus members authenticate each other via non-transferable

7



symmetric-key MACs, each consensus member has to communicate with others directly,
what results in the O(n2) communication complexity. Quadratic communication com-
plexity imposes a hard limit on the scalability of the system. Such a design is not
suitable for building a multichain system, since the workload of each validator grows
linearly with each added chain.

In the subsequent sections, we address these limitations in four steps:

1. Opening the Consensus Group. We introduce a lottery-based mechanism to
select the consensus group dynamically.

2. Replacing MACs by Digital Signatures. We replace MACs by digital signa-
tures to make authentication transferable and thus opening the door for sparser
communication patterns that can help reduce communication complexity.

3. Scalable Collective Signature Aggregation. We utilize Byzantine-tolerant
aggregation protocol that allows for quick aggregation of cryptographic signatures
and reduces communication complexity to O(log n).

4. Eliminating Validator Bottleneck. We assign each consensus participant to
one or more distinct committees depending on the set of chains he is willing to
support to improve system scalability.

5.2 Opening the Consensus Group
Spectrum is an open-membership protocol, so PBFTNetwork’s assumption on a closed
consensus group is not valid. Sybil attacks can break any protocol with security thresh-
olds and an appropriate dynamic selection of the consensus group becomes crucial for
preserving network’s liveness and safety. Election of consensus group members should
be performed in a random and trustless way to ensure that a sufficient fraction (at most
f out of 3f + 1) of members are honest.

Similar selection mechanics is required in most blockchain protocols. Bitcoin [41]
and many its successors are using Proof-of-Work (PoW) consensus, which, in essence, is
a robust mechanism that facilitates randomized selection of a leader who is eligible to
produce a new block. Later, PoW approach was adapted into a Proof-of-Membership
mechanism [42]. This mechanism allows once in a while to select a new consensus group
which then executes the PBFT consensus protocol.

A primary consideration regarding PoW-based consensus mechanisms is the amount
of energy required to operate such systems. A natural alternative to PoW is a mechanism
based on the concept of Proof-of-Stake (PoS) [43]. Rather than investing computational
resources in order to participate in the leader selection process, participants of a PoS
system instead run a process that randomly selects one of them proportionally to the
stake. Pure PoS mechanism to solve the PBFT problem was firstly used in [44] to select
both consensus group members and PBFT rounds leaders and to introduce randomness
into this process, a verifiable Random Function (VRF) has been applied.

5.2.1 Verifiable Random Function

A Verifiable Random Function (VRF) [45] is a reliable way to introduce randomness
into a protocol. By definition, a function F can be attributed to the VRF family if the
following methods are defined for the F :

– Gen: Gen(1l)→ (PK,SK), where PK is the public key and SK is the secret key.

– Prove: Eval(x, SK)→ π, where x is an input and π := Π(x, SK) is the proof,
associated with x and mixed with a random value, sampled from {0, 1}lVRF .

8



– Verify: V erify(x, π, PK)→ 0|1, where the output is 1 if and only if π ≡ Π(x, SK).

The most secure implementations of VRF nowadays are Elliptic Curve Verifiable
Random Functions (ECVRFs). Basically, ECVRF is a cryptographic-based VRF that
satisfies the uniqueness, collision resistance, and full pseudorandomness properties [46].
The security of ECVRF follows from the decisional Diffie-Hellman assumption in the
random oracle model, thus ECVRF is a good source of randomness for a blockchain
protocol. Using ECVRF is also cheap and fast, since single ECVRF evaluation is ap-
proximately 100 microseconds on x86-64 for a specific curves used in hash functions.
Moreover, there is a great UC-extension for batch verification proposed by [47] which
make it even faster by reducing the number of evaluations.

5.2.2 Lottery

Our lottery mechanism is based on ECVRF as a source of randomness and is generally
inspired by Ouroboros Praos [40] and Algorand [44]. The lottery mechanism in general
allows the protocol assign a specific role to a participant, while the validity of the
participant’s role can be verified using only publicly available data.

The main assigning logic is as follows:

1. Participant calculates a certain threshold value T according to predefined rules
and using only publicly available data for the calculation.

2. Participant evaluates VRF function and calculates a random number y using the
VRF’s proof π.

3. If y < T then the participant is considered valid for the respective role.

To be more precise, let’s clarify that in our setting a threshold value T is calculated
according to the formula T = 2lVRF · ϕf (α, f) where α = s/

∑M
i=1 si is a relative stake.

Consequently, the probability of winning is calculated as p(α, f) = 1− (1− f)α. Thus,
the winning probability depends on the participant’s relative stake and is adjusted by
the free parameter f . This is where the PoS concept comes into play: the bigger the
stake, the higher the chance of winning the lottery.

The lottery mechanism is fast, secure, and adaptive, since the involved pre-defined
parameters can be changed via the voting process. Moreover, the same primitives can
be used to achieve different goals and we will utilize the lottery mechanism in several
aspects of our protocol.

Consensus Group Lottery. In the current section, we are considering a lottery
mechanism application for dynamic consensus group selection. The Spectrum protocol
initially is running by the manually selected opening consensus group {PKi}Mi=1 of the
predefined size M . Stakeholders interact with each other and with locally installed ideal
functionalities FVRF and FLB over a sequence of L = E · R slots S = {sl1, . . . , slL}
consisting of E epochs with R slots each.

Let’s clarify what the mentioned above pre-defined primitives are needed for. The
ideal Verifiable Random Function functionality FVRF we use here is similar to the ex-
tended VRF functionality introduced by Christian Badertscher et al. [47]:

Ideal Leaky Beacon functionality FLB is used to sample an epoch random seed from
the blockchain and is defined as follows:

Functionality FLB(en, Cloc)

1: // New epoch random seed is sampled once per epoch.
2: // C_loc is the local chain of the validator.
3: if en < 2 then
4: return false

9



5: end if
6: for each Bk ∈ Cloc | (Bk.get(e) ≤ en−1) ∧ (∀Bk.get(sl) ∈ R · (n− 1) · 2/3) do
7:8: // Every block B_k in the C_loc was produced by i'-th leader
9: // during j'-th slot, i.e. k = (i', j').

10: πsl ← B.get(πsl).
11: Extract the random value rsl ← πsl.
12: yrand ← H(rsl||RAND).
13: ηn ← H(ηn−1||en||yrand).
14: end for
15: return ηn

An extended formal analysis of the security guaranties of the FLB can be found in the
original Ouroboros Praos paper [40].

Consensus group is constantly rotated each epoch en > 2. Any verified protocol par-
ticipant PKi can try to become a temporal member of the consensus group. Participant
is verified if his verification key tuple vver

i is published in the blockchain during the
epoch ej−2 in the special VerificationRegTx(vver

i ). The consensus group lottery flow is as
follows:

1. At the end of the epoch en > 2 every verified participant PKi requests a new
epoch seed ηn from the FLB.

2. New consensus lottery threshold T cons = ϕfcons(αn−2
i ) is calculated by every PKi

using stake distribution (to get the relative stake αn−2
i ) from the blockchain state

at the last block of the epoch en−2. Free parameter f cons of the associated function
ϕ is f cons = Mn/Nn, where Mn is a pre-defined number of new consensus group
members to select at epoch en and Nn is the total number of verified stakeholders.

3. When every PKi evaluates FVRF with input xcons = ηn||en and calcu-
lates the associated random number ycons

i,n from the received proof πe
i,n, i.e.

ycons
i,n = H(re

i,n||CONS), where re
i,n is a random number extracted from the proof

and CONS is an arbitrary pre-defined constant.

4. To reveal the result of the consensus group lottery PKi compares value ycons
i,n with

the threshold T cons
i,n . If ycons

i,n < T cons
i,n then the participant is a legal member of new

consensus group which will be active in the epoch en+2.

5. Finally, to declare his right to participate in the new consensus group, participant
PKi includes an associated proof πe

i,n into the ConsLotteryResTx(en, vvrf
i , πe

i,n) and
adds it into the main chain.

Note, that the members of the consensus group should be known ahead of time for the
synchronization. Therefore, in order to participate in the en consensus lottery already
verified participant must publish VerificationUpdTx message with his verification tuple
at the epoch en−2. Public disclosure of the future consensus group doesn’t give much
advantage to an adversary since there are hundreds of consensus members in every epoch
and denial of service attacks are difficult to succeed. At the same time any grinding
attacks are limited because an adversary can’t arbitrarily control ηn values.

The main task of the validators set elected via the consensus group lottery is to
observe and notarize events using a digital signature aggregation mechanism which we
will introduce in the next sections.

5.3 Replacing MACs by Digital Signatures
The main issue with MACs is that any node capable of validating MAC is also capable
of generating new messages with valid MACs as the secret key used for MAC generation

10



is also necessary for validation. Digital signatures, on the other hand, use asymmet-
ric protocols for signature generation and signature verification powered by public-key
cryptography. A valid secure digital signature for the message can only be generated
with the knowledge of the secret key (non-forgery requirement), and verified with the
corresponding public key (correctness requirement), and the secret key never leaves the
signer’s node. The authenticity of the message from the network node can be verified by
any party knowing the node public key. Moreover, given the full history of communica-
tion, the malicious actor is still not able to forge the new message with valid signature
of the node. This gives a way finer control over the set of permissions and provides a
strong authentication method.

Spectrum utilizes the specific subset of signatures based on so-called sigma-protocols.
The benefits of these protocols are numerous, including the possibility of proving com-
plex logical statements inside the scheme, provable zero-knowledge, and use of standard-
ized and well-established crypto-primitives, namely conventional cryptographic hash
functions and standard elliptic curves with hard discrete logarithm problem. This means
the high level of support in the existing chains without modification of the core opcodes
or writing supplementary on-chain routines.

5.4 Scalable Collective Signature Aggregation
In this section we describe our approach to the following problem. The naive approach to
writing the consensus values on the blockchain in a verifiable way would be simply write
the resulting values together with the signatures from every node which successfully par-
ticipated in the consensus protocol. Spectrum consensus groups can contain thousands
of nodes. If one takes Schnorr signature scheme [48] with 256-bit keys, every signature
is 64 bytes long. That means thousands of kilobytes of data needed to be written on
the blockchain and consuming valuable storage space, not speaking on the computa-
tional efforts from the blockchain validating node to actually verify all these signatures.
Therefore, in these circumstances, the signature aggregation method is mandatory.

The aggregation allows one to write a single shorter signature instead of the list of
signatures while preserving similar security level. There are few signature aggregation
schemes for the sigma-protocol based signatures, such as CoSi [49] and MuSig [50]. These
protocols perform extremely well if all the keys of the predefined set of co-signers are
included in the resulting signature generation. In this case instead of having thousands
of separate signatures one has only one of the size of single Schnorr signature. But
this is not the case with many realistic situations with large consensus groups (such as
Spectrum). It would be too optimistic to assume that all the nodes are always online,
and every single node is following the protocol honestly to every letter. One needs the
mechanism to process these failures. Whereas CoSi proposes the method to process such
failures, it comes at cost of significant increase in the size of the resulting signature. Our
scheme relies on the similar ideas, however we tend to provide better scaling with faulty
nodes and more compact constructions than the original CoSi.

In short, we construct a compact aggregated signature scheme with potential node
failures based on standard cryptographic primitives. It must have constant small size in
the absence of failures and provide reasonably small space and computational overheads
in the presence of failures. The signing protocol must be performed in a distributed
fashion providing defence from the malicious co-signers.

5.4.1 General Overview

We start with the MuSig scheme and modify it to the meet the criteria listed above.
We assume the Discrete Logarithm group to be the subgroup of the elliptic curve as
usual. That is, elliptic curve is defined over finite field, we consider subgroup of its

11



points with coordinates in this field of prime order with fixed generator g and identity
element being the point at infinity if the curve is written in the form y2 = f(x), f is
the third degree polynomial. Nothing prevents one from using another group with hard
discrete logarithm problem. We use multiplicative notation for the group operation,
and the group elements except for generator are written in capital letters. The secret
keys are the integers modulo group order, we will denote them by lowercase letters. H
is the cryptographic hash function. When we write H(A,B), we assume that there is
a deterministic way of serializing the tuple (A,B), and this serialization is used as an
argument for H. The public key corresponding to the private key x is the group element
X = gx.

Any interactive sigma-protocol consists of three stages in strict order: commitment
(when one or more group elements are sent from prover to verifier), challenge (when the
random number is sent from verifier to prover), response (when one or more numbers
calculated from the previous stages and the secret key are sent from prover to verifier).
This triple constitutes the Proof-of-Knowledge of the secret key. To turn the interactive
protocol into a non-interactive one, Fiat-Shamir heuristic is used, where the challenge
is replaced by the hash value of all the preceding public data.

The takeaways from this setting, which are important for the understanding of our
construction are the following:

• In case of n nodes one must have n commitments to aggregate and the list should
not be changed till the end of the protocol.

• As the commitments from different nodes come at potentially different time, there
can be an attack on this stage. Say, one node does not pick the commitment
based on random, but rather calculates it based on the commitments received
from the other nodes. This kind of attack is known as k-list attack, as to forge the
upcoming signatures the malicious node solves the k-list problem, which is quite
possible with a sufficient amount of data. To exclude this possibility one needs
all the nodes to “commit to Schnorr commitment” beforehand. One can use hash
function with no homomorphic properties for that purpose.

• All the steps are strictly sequential. Hence, every stage must complete with the
full aggregation of individual contributions. There does not seem to be a simple
way to perform it fully asynchronously.

• Instead of the last step (response) it is sufficient to provide the proof of knowledge
for the response. This brings no additional value to the conventional signatures,
but it helps with the processing of the node failures during the execution. Namely,
the consensus group may demonstrate that somebody in the group knew the dis-
crete logarithms of the commitments not accounted for in the response stage.
Therefore, the group as a whole could compute the full response if the failure had
not occurred.

• There must be a way to count the failures above, such that the signature verifier
could decide whether it tolerates this number or not.

5.4.2 Aggregation Rounds and Structures

Here we list the overall structure of aggregation to give a grasp on the overall process.
The detailed explanation is presented below:

Round 1: Pre-Commitment. Collect Commitments for Schnorr commitments.
Structure: list of hashes of elliptic curve points. Distribute all the hashes after the
aggregation.

12



Round 2: Commitment. Collect and aggregate Schnorr commitments. Struc-
tures: list of signatures (proofs of discrete logarithms for the commitments) to-
gether with Schnorr commitments. Distribute among all the nodes. Upon receiving
every node verifies that the hashes of the points are those provided on round 1,
and verifies the proofs of discrete logarithms. The commitments with the checks
passed are aggregated to get the overall commitment. It is used to compute the
challenge and the individual responses in the sigma–protocol.

Round 3: Response. Collect and aggregate the responses. Structure: list of
individual responses. Upon receiving every individual response is verified. The
responses which passed the verification are added together. If the response is
invalid or missing, the corresponding discrete logarithm proof from round 2 is
appended to the output.

Output. Aggregate signature (Y, z) together with the set

{(Yi, DlogProof(Yi)} ,

where i runs over the set of nodes which have not provided valid responses.

5.4.3 Signature Generation

The signature generation algorithm is as follows:

1. Each signer computes ai ← H(H(X1, X2, . . . , Xn);Xi) and the aggregate public
key X̃ ←

∏
i X

ai
i .

2. Each signer generates a pair Yi = gyi to commit to, commitment ti ← H(Yi) and
the signature σi of some predefined message with secret key yi.

3. The commitments ti are aggregated in the list L1.

4. After every participating co–signer received L1, the tuples (Yi, σi) are aggregated
in the list L2.

5. Upon receiving the tuple (Yi, σi), verify ti = H(Yi), and verify that σi is a valid
signature corresponding to Yi. The failed records are excluded from L2, the next
steps and communication round.

6. Every node computes the aggregate commitment Y =
∏

i Yi using all the valid
records in L2.

7. Every node computes the challenge c← H(X̃, Y,m) and the responses
zi ← yi + caixi.

8. The responses zi are aggregated into list L3.

9. Initialize z ← 0 and empty set R← {}.

10. Upon receiving the response zi, verify that gzi = YiX
aic
i .

11. If this is the case, set z ← z + zi. Otherwise, insert corresponding entry from L2

in R as (i, Yi, σi).

12. Output the triple (Y, z,R).

13



5.4.4 Signature Verification

The signature verification is carried out as follows:

1. Compute ai ← H(X1, X2, . . . , Xn;Xi).

2. Compute X̃ ←
∏

i X
ai
i .

3. Compute X ′ =
∏

i/∈R.0 X
ai
i .

4. Compute Y ′ =
∏

i∈R.0 Yi.

5. Compute c← H(X̃, Y,m).

6. Verify gz = X ′cY Y ′−1.

7. Verify all of σi ∈ R.2 with respect to Yi ∈ R.1.

8. Compare (n− k) (where k is the size of R) with the required threshold value.

5.4.5 Instantiation of Signature Aggregation

We instantiate our signature aggregation protocol on top of Handel [51], a Byzantine-
tolerant aggregation protocol that allows for the quick aggregation of cryptographic
signatures over a WAN. Handel has polylogarithmic time, communication and process-
ing complexity.

Our signature aggregation protocol involves aggregation of three lists: L1, L2 and
L3. As long as Handel requires that the partial aggregation function satisfies both com-
mutativity and associativity conditions we have to replace lists with sets. We instantiate
each of three aggregation rounds on top of Handel round. Because of parallel nature of
Handel we have to run multicasting between chained rounds of aggregation in order to
consistently aggregate. The resulted construction consists of three Handel rounds and
two multicasting rounds in between.

5.5 Eliminating Validator Bottleneck
So far, each member of the consensus group had to track changes on all connected
chains in order to participate in consensus properly. However, this approach reduces
the number of possible consensus participants and limits the scalability of the system.
Therefore, for the optimal design of our consensus protocol, we will use the following
observations:

Observation 1: Events coming from independent systems Sk are not serialized.

Observation 2: Outbound transactions on independent systems Sk can be inde-
pendently signed.

Utilizing those properties, we now introduce committee sharding. We modify the
protocol in a way such that at each epoch en, K distinct committees consisting of nodes
equipped with functionality unit Fk

ConnSys relevant to a specific connected system Sk are
selected via the consensus group lottery. All primitives used in the lottery are equal for
different committees, however, lotteries are independent.

We denote one such committee shard as V k
n , which uniquely maps to Sk. Then,

complete mapping of committees to chains at epoch en can be represented as a set of
tuples committee-chain {(V k

n , Sk)}Kk=1. Throughout epoch en all events and on-chain
transactions in Sk are handled exclusively by V k

n . Nodes in V k
n maintain a robust local

ledger Lloc,k with notarized reports consisting of events observed in Sk.

14



5.5.1 Leader Lottery

Once all validators sets {V k
n }Kk=1 for epoch en are elected via the consensus group lottery,

the lottery process does not stop, but this time, in order to initialize the notarization of
the report, the leader of every committee should be determined.

The leader lottery flow for every separate V k
n during epoch en is as follows:

1. At the end of the epoch en−1 every consensus group member PKi ∈ V k
n requests

a new epoch seed ηn from the FLB.

2. Every k-th committee member calculates the leader lottery threshold value
T lead,k
i,n = ϕf lead

k
(αn−2

i ). Stakeholders distribution is calculated according to the
blockchain state at the last block of the epoch en−2. The parameter f lead

k is the
pre-defined value that determines how many slots will have at least one selected
leader for the committee V k

n .

3. When, for every slot slj ∈ en every committee member PKi evaluates FVRF with
input xlead

j = ηn||slj and calculates the associated random number ylead
i,j from the

received proof πsl
i,j , i.e. yki,j lead = H(rsl

j ||LEAD||Sid
k ), where rsl

j is a random number
extracted from the proof and LEAD is an arbitrary pre-defined constant.

4. To reveal the result of the leader lottery PKi compares value yki,j
lead with the

threshold T lead,k
i,n and if yki,j lead < T lead,k

i,n then the participant is a j-th slot leader.

5. Finally, PKi initiates a notarization round for slot slj with the associated proof
πsl
i,j included in his initialization message.

Regarding the security it is important to note that slot leaders don’t become publicly
known in advance. An attacker can’t see who is a slot leader until he initializes report
notarization, thus an attacker can’t know who specifically to attack in order to try
to subvert a certain slot. All he can try to do is to make as many forks as possible
to estimate the most advantageous, but according to the analysis [40] this advantage
doesn’t change the security properties of the entire protocol.

5.5.2 Syncing Shards

Each committee V k
n forms the notarized reports of events and adds them into its local

ledger Lloc,k. All these reports should be periodically synced and added to a block of the
main super ledger L+ in order for the system to be able to compute a cross-chain state
transition. To facilitate this process, reports should be broadcast to other committees.
The main actors at this stage are:

1. Local leader : local committee leader.

2. Relayer : any protocol participant that broadcasts notarized reports to the local
leader and to other committees’ members. Every local leader can be a relayer at
the same time.

3. General leader : one of the local leaders who added a block consisted of collected
notarized reports and other internal transactions to the L+.

There is no separate lottery for the general leadership and any local leader is able to
publish his block to L+, thus, he can choose from two main strategies:

1. Wait : malicious strategy where local leader waits for broadcasts from other com-
mittees members and doesn’t broadcast his own report to eliminate competitors
for adding a block.

15



2. Broadcast and wait : fair strategy where local leader immediately broadcasts his
report, waits for broadcasts from other committees’ and then competes honestly
for adding a block.

There should be a motivation for an individual local leader to choose the fair strategy
instead of keeping his report for too long and there also should be a motivation for
every committee member to act as a relayer. This is achieved through the design of the
incentive system.

There are three types of the incentive for the Spectrum protocol participants:
{Rb, Rd, Rm}, where Rb is a guaranteed reward for adding a notarized report to the
block, Rd is given for broadcasting a report to the general leader and Rm is given per-
sonally to the general leader who will finally add the block. Delivery reward Rd is given
if and only if a delivery was made within a predetermined period of time ∆td.

Reward amounts are initially configured in such a ratio that if Rd = 0 there is no
prior strategy for local leaders, they will either wait for other reports or broadcast their
reports with equal probability. At the same time, all other committee members are
motivated to act as a relayers to receive an extra reward, since the notarized report can
be firstly generated by any member of the committee. All the rewards except Rm are
shared equally between all committees members whose signatures are included in the
finally added block.

As a result, the syncing shards flow looks as follows:

1. After notarization, a committee member holding the notarized report which con-
tains the local notarization time, sends it to his local leader and to other known
committees members.

2. All committees members who receive notarized reports from other committees also
send them to the local leader.

3. The local leader collects the received notarized reports.

4. When waiting time approaches ∆td, the local leader forms and broadcasts a block
consisting of all external collected reports and reports from the local Lloc,k that
have not yet been added to L+.

5. After block is reliably settled in the L+, all associated participants can claim their
rewards.

We also introduce another type of authority incentive that decreases chances of unfair
and inactive participants in the consensus group lottery. When calculating the lottery
threshold all stakes are weighed depending on the actions of their holders in the previous
epoch, i.e. si = Am · sreal

i , where Am is the authority multiplier. If some authority was
a member of the previous committee and participated in the adding of at least 2/3 of
the blocks produced in the considered period of time (same which is used to sample new
epoch seed), then his actual stake sreal

i is multiplied by Am = 1. Multiplier Am decreases
linearly to 0, which is the case where member was passive during the entire epoch.

With this mechanism, we solve the following problems:

• Members are motivated to be focused on cooperation with other committees so
that their participation is reflected in each block added in the L+.

• Inactive and dishonest members are automatically excluded from the next epoch
committee.

• Participants are motivated to stay active throughout the entire epoch so that their
chances of being selected in the committee don’t decrease due to an authority mul-
tiplier Am < 1, otherwise, in order to even the odds with new lottery participants,

16



they will either have to increase their real stake or skip the lottery until the next
one.

5.5.3 Key Evolving Signature Scheme

All blocks added into L+ must be signed with a committee leader’s signature. In regular
digital signature schemes, an adversary who compromises the signing key of a user can
generate signatures for any messages, including messages that were generated in the past.
Usage of the Key Evolving Signature (KES) scheme provide the forward security [52]
that is necessary for handling the adaptive corruption setting.

A function F can be attributed to the KES family if the following methods are
defined:

– Gen: Gen(1l)→ (PK,SK), where PK is the public key and SK is the initial the
secret key.

– Update: Update(SK)→ SK ′, where SK ′ is associated with new time period.

– Sign: Sign(SK,m)→ σ, where σ contains the actual time period.

– Verify: V erify(σ, PK,m)→ 0|1.

Accordingly, KES allows any protocol participant to verify that a given signature was
generated with the legal signing key for a particular slot. The security guarantees are
achieved by evolving the secret key after each signature in a way that the actual secret
key was used to sign the previous message cannot be recovered.

One of the most efficient realizations is the MMM scheme [53]. This scheme uses
Merkle trees in the KES methods, resulting in good performance in terms of updating
time and signature size. Using this scheme, 2l secret keys can be securely restored,
while size of the signature is kept constant and depends on only pre-defined security
parameter l.

5.5.4 Forks and Integrity

Protocol flow implies that there can be a several local leaders in every connected Sk

committee, which leads to forks. This type of fork is a normal part of the protocol
lifecycle, however, total possible number of the normal forks in our protocol is greater
than in other blockchains, since any of the local leaders can append their blocks to L+.
The chance of occurring a malicious forks produced by an adversary is minimized due to
the lottery and the incentive mechanism design. In addition, the task for an adversary
becomes more difficult by virtue of the interaction between the protocol participants
during the syncing shards process.

For the above reasons, the main rules for resolving forks are simple and are followed
by members of all committees when validating a proposed blocks:

1. Densest chain: this rule mandates that if two chains C and C ′ start diverging at
some time τ according to the reported beacon’s slots then prefer the chain which
is denser in a sufficiently long interval after that time. Full algorithm of this novel
chain selection rule can be found in the original paper [35].

2. Max stake: if the densest chain rule doesn’t resolve a slot battle, then the valid
chain chooses according to the real stake size of the battled chains, the maximum
stake is the winner.

We will note here, that the densest chain rule is crucial for a global clock synchronization.
It offers a useful guarantee than the joining party will end up with some blockchain that,

17



although arbitrarily long, is at worst forking from a chain held by an honest and already
synchronized party by a bounded number of blocks (equal to the security parameter Kf)
with overwhelming probability [36].

However, a large number of forks still significantly affect properties that maintain
the integrity of the L+:

1. Latency : the number of elapsed slots required for a transaction to appear in a
block on the L+.

2. Finality : the number of elapsed slots required for a transaction to become settled
and immutable.

The latency of the protocol is good enough due to the short duration of the slots,
while the finality, as a result of the functional features of our protocol, depends on the
connected Sk integrity properties.

Most ledgers do not guarantee instant finality of transaction, that means that any
(or all) transactions may not be applied to the corresponding Sk ledgers in the end.
Different blockchains has different finality parameters, and the Spectrum finality time
corresponding to adding Kf blocks should be greater than all of them. Thus, a reliable
confirmation time should be set with a margin and, therefore, using the number of slots
∆sl that have passed in the Spectrum network, developers should be able to receive
information about the number of blocks that have passed in any connected blockchain
during this period of time. The duration of block creation in each Sk is different, but
the average values are preserved for a certain period of time ∆T >> ds, where ds is the
duration of Spectrum’s slot. Thus, after each ∆T time interval, Spectrum network will
update the set of constants: {(dk,Kk

f )}Kk=1, where dk is a block duration in the Sk and
Kk

f is the default reliable number of confirmations in the Sk.
Using the data above, each Spectrum’s ∆sl can be associated with the delta of blocks

that have passed in any connected blockchain: {⌊∆sl · ds / dk)⌋}Kk=1. When forming
transaction, developers can specify a custom reliability factor K̂ f . This factor will be
compared with the ratio of the number of blocks passed on the associated Sk to the
default reliable number of confirmations Kk

f of this system.
The ability to access this information is important for tracking the status of value

carrying units in the Spectrum’s global state. The aspects of the implementation of our
ledger is described further in the text.

5.6 Clock Synchronization
As we pointed out in 4.1 the protocol requires a common notion of time among all
participants. To avoid relying on centralized time oracles which would undermine net-
work security we adopt decentralized logical time synchronization technique based on
synchronization beacons [36].

All committees V k
n members participate in the synchronization process, and it is

based on the following logical blocks:

Synchronization slots. Once a consensus participant’s local time reaches syn-
chronization slot sln·R, n ∈ N, his clocks are adjusted before moving to the next
slot (i.e. next epoch).

Synchronization beacons. In addition to other messages, all members of the
consensus group generate so-called synchronization beacons. For every local slot
slloc

i,j ∈ [n ·R+ 1, . . . , n ·R+R/6], n ∈ N every PKi evaluates FVRF functionality
with input xsync,n

j = (ηn||slloc
i,j ) to get a proof πsl

i,j and checks if he has the right
to release a beacon by comparing the pseudo-random value ysync

i,j = H(rsl
j ||SYNC)

18



with the corresponding threshold T sync
i,n = 2lVRF · ϕ(αn−2

i ). If ysync
i,j < T sync

i,n then
the participant broadcasts a beacon bsync

i,j = (vvrf
i , slloc

i,j , π
sl
i,j).

Arrival times bookkeeping. Every consensus participant PKi main-
tains an array bset

i of received beacons with beacon’s arrival local time
slreci,j : (slloc

i′,j , flag) ∈ N× (final, temp). Assume a beacon bsync
i′,j′ emitted by PKi′

is fetched by a party PKi for the first time:

• If PKi has not yet passed synchronization slot slloc
i,n·R and the received bea-

con belongs logically to this party’s next epoch, then decision is marked as
temporary and PKi stores a record slreci,j : (slloc

i′,j′ , temp). Value slreci,j will be
adjusted once this party adjusts its local time-stamp for the next epoch.

• If PKi has already passed synchronization slot slloc
i,n·R but not yet passed slot

slloc
i,(n+1)·R, then the received time is defined as the current local slot number

and is considered final, i.e. slreci,j : (slloc
i′,j′ , final).

If a party has already received a beacon for the same slot j′ and creator PKi′ , it
will set the arrival time equal to the first one received among those.

The synchronization interval. For a local clock adjustment, which is triggered
by a synchronization slot only beacons with recorded arrival time in the interval
[(n− 1) ·R+ 1, . . . , (n− 1) ·R+R/6] are used.

Computing the adjustment evidence. The adjustment is computed based on
the received beacons set bset

i . Beacon breci,j is only considered valid for adjusting
procedure triggered by a synchronization slot if:

1. Recorded time slloc
i′,j′ ∈ bsync

i′,j′ is final and belongs to the synchronization inter-
val [(n− 1) ·R+ 1, . . . , (n− 1) ·R+R/6].

2. Beacon is included into the block whose creation slot belongs to the interval
[(n− 1) ·R+ 1, (n− 1) ·R+ 2 ·R/3]

3. Beacon’s proof πsl,n
i,j is valid.

Adjusting the local clock. Every party PKi computes shifti,n to adjust
its clock in the synchronization slot sln·R. Value of the shift is calculated as

ˆshifti,n = median{slloc
i′,j′ − slreci,j |∀b

sync,n
i′,j′ ∈ bset

i }. Using the calculated shifti,n value
all bset

i records with temp status is updated as slrec,ni,j + ˆshifti,n and the adjustment
procedure is performed again to receive a final shifti,n value.

As a result of the above synchronization procedure, at the beginning of the next
round the party PKi will report a local time equal to n ·R+ shifti,n + 1. If shifti,n > 0,
the party proceeds by emulating its actions for shift rounds. If shifti,n < 0, the party
remains a silent observer until its local time has advanced to slot n ·R+ 1 and resumes
normally at that round.

5.7 Decentralized On-Chain Asset Management
In order to lift on-chain assets to cross-chain level, Spectrum has to take control over
them. Thus, all assets that Spectrum operates on are stored in on-chain vaults which
are ruled by the consensus.

Each vault corresponding to the connected system Sk stores an epoch number
n, an aggregated public key αPKk

n of the current validator set V k
n and is guarded

with a smart-contract capable of performing an aggregated signature verification
verify : (σk

n, αPKk
n,m

k
n)→ 0|1.

19



5.7.1 Rotating Authorized Committees in Vaults

As explained before, committees in Spectrum are constantly rotated. Thus, vaults have
to be updated accordingly. The transition is performed with the help of “retiring”
committee, that must call changeEpoch : (σk

n, αPKk
n+1) on the vault contract, where

αPKk
n+1 is the aggregated public key of the next commitee.

5.8 Ledger
Spectrum’s global state includes a pool of value carrying units called cells. A Cell en-
codes monetary value (e.g., fungible or non-fungible tokens) travelling inside the system
and across its boards.

TxId = H(Tx)
CellId = H(TxId × I)

Each cell has a unique identifier derived from ID of the transaction that produced
the cell and its index in the transaction outputs. The identifier remains stable even
when cell is modified as we explain below.

Value = u64
ChainId = u64
Version = u64

ProgressPoint = ChainId × u64
ActiveCell = CellId × Address×Value×Version

BridgeInputs = [u64]
Destination = ChainId × BridgeInputs

TermCell = CellId × Value×Destination
Cell = ActiveCell ⊎ TermCell

We distinguish two essential types of cells depending on the state of the value they
encode.

5.8.1 Active cells

Active Cell is a value travelling between owners inside the system. An Active Cell can
be modified while preserving its original stable identifier. With each mutation version
of the cell is incremented which is initialized with 0 when the cell is created. This opens
the door for smooth management of shared cells (e.g., stablecoin bank or liquidity pool).

5.8.2 Authenticators, Addresses and Ownership

Authenticator = ProveDlog ⊎ Script
Address = H(Authenticator)

Each active cell has an exclusive owner identified by an address. Address is derived
from an authenticator by applying collision resistant hash function to it. To prove
ownership of a cell a party must supply an authenticator whose hash matches the owning
address. An authenticator can either be a public key or a script. Once authenticated
an owner can freely move value locked within the cell by either mutation or elimination
of it.

5.8.3 Terminal cells

Terminal cells encode value to be exported into an external system. In contrast to active
cells, terminal cells are immutable and value from them cannot be moved within the
system anymore.

20



5.8.4 Transactions and Effects

Imported = ActiveCell
Exported = CellId
Revoked = CellId

Progressed = ProgressPoint
Eff = Imported ⊎ Exported ⊎ Revoked ⊎ Progressed

Global pool of cells is modified by atomic state modifiers called Effects and Trans-
actions.

Effects are state transitions imported from external systems exclusively by local
committees. Below we list possible effects:

1. Import of value. A deposit into one of Spectrum’s on-chain vaults which results
in creation of a new cell.

2. Export of value. An outbound transaction that transfers value from Spectrum’s
on-chain vault to user address on particular blockchain.

3. Revocation of previously imported value due to roll-back on the source chain.

4. Signalisation that external system reached particular progress point.

CellRef = CellId × Version
Inputs = CellRef × [CellId ⊎ CellRef]

RefInputs = [Cell]
EvaluatedOutputs = [Cell]

Tx = Inputs × RefInputs× EvaluatedOutputs

In contrast to effects, transactions are state transitions triggered by Spectrum users.
A transaction accepts cells that it wants to mutate or eliminate as inputs and outputs
new cells or upgraded versions of mutated cells. Therefore, scope of transaction is
restricted to its inputs and outputs.

Transactions: Referencing inputs. Transaction can reference cells to use as
inputs either by cell ref (fully qualified reference) or only by stable identifier. In the
latter case, a concrete version of the cell with the given stable identifier will be resolved
in the runtime of the transaction. Importantly, each transaction must have at least one
fully qualified input, this guarantees that each transaction is unique.

Transactions: Programmability. Some outputs may be computed in the runtime
of a transaction as a result of script(s) execution. It is also possible to include pre-
evaluated outputs into transaction in order to save on on-chain computations. This
design allows dApp developers to choose the amount of on-chain computations of their
apps.

5.8.5 Dealing with finality of imported value

Because Spectrum is a cross-chain system, monetary value there is usually imported
from an external system (e.g. Cardano or Ergo). Since most of the cryptocurrencies
don’t provide instant finality of transactions, on-chain transaction that once imported
value into Spectrum’s on-chain vault may be rolled-back. There are two ways of pre-
venting “dangling” value inside Spectrum. On the one end of spectrum is a conservative
approach: wait for settlement on the source chain (e.g. 120 blocks in Ergo) before import
to be 100% sure the transaction will not be rolled back. On the other end is a reac-
tive approach: import value immediately and revert locally transactions that depend
on that piece of value in the case of rollback. Conservative approach offers simplicity

21



and is cheaper to execute, while reactive one allows to work with imported value inside
spectrum with minimal delays.

Observation: Probability of a rollback at a certain height decreases exponentially
with square root scaling in the exponent as chain extends [40].

Based on this observation we choose a hybrid approach. Value is imported with a
small delay Dc which is configured for each chain and is sufficient to keep probability of
rollback low. If rollback happens after the import all transactions directly or transitively
depending on the dangling value are reverted.

As long as outbound transactions can not be reverted it is of paramount importance
to wait for complete settlement of the imported value before allowing to export it.
Each cell is associated with a set of dependencies called anchors represented as unique
identifier of a chain and a height which the chain is required to reach in order for the
anchor to be deemed as non-anchored. Active anchors leak from cells in inputs into
created cells in outputs. It is impossible for a terminal cell to be exported until all
anchors it depends on are reached.

5.9 The Full Protocol
Let’s summarize all of the above and describe the full flow of the Spectrum protocol.
Protocol is running by a set of manually selected opening consensus groups {V k

1 }Kk=1

for K connected distributed systems {Sk}Kk=1. Each group consists of at least Mk

stakeholders interacting with each other and with the ideal functionalities FInit, FVRF,
H, FLB, FAggSig, FKES, GImpLClock and GLedger over a sequence of L = E · R slots
S = {sl1, . . . , slL} consisting of E epochs with R slots each.

Functionality FInit [35] formalizes the procedure of genesis block creation and dis-
tribution. Functionality FAggSig implements the presented in 5.4 aggregated signature
scheme logic. Functionality GImpLClock [36] implements the local clock setting and ad-
justing logic. Functionality GLedger implements the logic of interaction with the ledger.
Also, each protocol participant maintains at least one functionality unit Fk

ConnSys that
allows him to interact with the connected Sk.

Protocol configuration is represented by publicly known set of constants:
R, lVRF,Kf,Kg,Sid = {Sid

k }Kk=1, flead = {f lead
k }Kk=1, fcons = {f cons

k }Kk=1

5.9.1 Bootstrapping

The system is bootstrapped in a trusted way. All Mk members of {V k
1 }Kk=1 committees

perform the following procedure:

1. On-chain vaults are initialized with an aggregated public key aPKk
1 of the initial

committee.

2. All committee V k
1 members i.e. ∀PKi ∈ V k

1 must generate the tuple of ver-
ification keys vver

i = (vvrf
i , vkes

i ,Sid,i), using the ideal functionalities FVRF and
FKES. The tuple also includes a set of ids of the connected distributed systems
Sid,i ⊂ Sid, the functionalities {Fk

ConnSys}K
′

k=1,K
′ ≤ K to interact with which the

participant PKi is equipped with. Verification tuple is committed on-chain in the
VerificationRegTx(vver

i ).

3. Full set of the verification keys tuples Vver = {(vvrf
i , vkes

i ,Sid,i)}Mi=1 with the initial
stakes S = {si}Mk

i=1 must be stored in the genesis block B0 and acknowledged
by all members of the initial consensus group (meaning members of all {V k

1 }Kk=1

committees).

4. Functionality FLB, parameterized with the confirmed Vver is evaluated indepen-
dently by every participant to sample an initial random seed value η ← {0, 1}lVRF.

22



5. Finally, all approved stakeholders should agree on the genesis block
B0 = (Vver, S, η).

5.9.2 Chain Extension

Once the system is bootstrapped, the Spectrum protocol operates in a normal flow.
Committee {V k

1 }Kk=1 members adds notarized reports of events observed on external
connected systems {Sk}Kk=1 into the local ledgers {Lloc,k}Kk=1. Blocks with all protocol
updates are stored in the common for all participants super ledger L+.

1. Before the epoch en > 2 begins each protocol participant PKi must update his
state variables:

– Receive new epoch seed ηn from the FLB.

– Set the leader lottery thresholds for each k-th committee he is involved in
Tlead = {T lead,k

i,n = ϕf lead
k

(αn−2
i,k }K

′

k=1,K
′ ≤ K, where αn−2

i,k is a participant’s
relative stake relative to V k

n members according to the state of the blockchain
at the end of the epoch en−2.

– Set the synchronization lottery threshold T sync
i,n = 2lVRF · ϕ(αn−2

i ), where
αn−2
i is a participant’s relative stake relative to all K committees members

according to the state of the blockchain at the end of the epoch en−2.

2. In the epochs first (synchronization) slot each PKi adjusts his local clocks by
shifti,n value calculated according to previously collected synchronization beacons
set bset.

3. During the epoch all online V k
n member collects existing chains from L+ and ver-

ifying that for every chain, every block, produced up to Kf blocks before contains
correct data about the corresponding slot sl′ leader PK ′. Each validator must
verify that PK ′ is indeed the winner of the leader lottery for slot sl′ as well a
valid member of the legitimate committee V k

n′ . All forks must be resolved by the
densest chain and largest stake rules in the corresponding priority.

4. During the epoch, for every slot slj ∈ [R · n,R · (n + 1)] every committee V k
n

member PKi separately evaluates FV RF with an input xlead
i,j = ηn||slj to receive

a slot proof πsl
i,j and an associated random value rsl

j .

Then PKi calculates ylead
i,j = H(rsl

j ||LEAD||Sid
k ) and compares it with the associ-

ated threshold T lead,k
i,n . If ylead

i,j < T lead,k
i,n then the participant is the slot slj leader.

Leader is allowed to:

– Initiate the notarization round in his local committee V k
n to add new notarized

report into Lloc,k.

– Propose a new block to be added to the L+.

In addition, during the first R/6 slots of the epoch all PKi checks his
right to release a synchronization beacon comparing the pseudo-random value
ysync,n
i,j = H(rsl

j ||SYNC) with a corresponding threshold T sync
i,n . If successful then

the participant broadcasts a beacon message bsync
i,j = (vvrf

i , slloc
i,j , π

sl
i,j).

23



5. All committee V k
n members observe events in their systems Sk and in the L+

mempool. If PKi is a slot slj leader, then he is able to propose a report bj of
events observed in Sk, which should be notarized by other members of the V k

n

using the aggregated signature functionality FAggSig and then added to the local
ledger Lloc,k.

6. Notarized report b∗j can first be formed by any member of the V k
n . The report

must be immediately sent to the leader who initiated its notarization and to the
members of other committees. After the leader receives enough reports he forms
a block B′ consisting of all external collected reports and reports from the local
Lloc,k that have not yet been added to L+. He must include into the block the
proof of his leadership πsl

i,j , sign the block with FKES and broadcast it to his peers
from all committees with the correct signature σKES included.

7. After the finality Kf blocks are passed since B′ settlement in the L+, all members
of all committees that participated in the formation of the block B′ can claim their
rewards.

5.9.3 Epoch Transition

1. Consensus Group Lottery.

– At the beginning of the epoch en−1 > 2 each verified PKi willing to partic-
ipate in the consensus group lottery for the V k

n commit his willing in the
message VerificationUpdTx(vvrf

i ,Sset
i ) if he is already verified, or generate ver-

ification keys tuple and broadcasts VerificationRegTx(vver
i ).

– At end of the epoch en−1 each verified and willing to participate in the con-
sensus lottery PKi calculates new consensus lottery thresholds for all com-
mittees he wants to be selected in {T cons,k

i,n = ϕfcons
k

(αn−2
i,ver ·Ai,n

m }K
′

k=1,K
′ ≤ K,

where αn−2
i,ver is a participant’s relative stake relative to all verified participants

equipped with Fk
ConnSys according to the state of the blockchain at the end

of the epoch en−2 and Ai,n
m is an activity multiplier.

– When every PKi evaluates FVRF with input xcons
i,n = ηn||en to receive an

epoch proof πe
i,n.

Then for each Sid
k ∈ Sset

i calculates the associated random number ycons,k
i,n

from the proof πe
i,n, i.e. ycons,k

i,j = H(re
n||CONS||Sid

k ). If ycons,k
i,j < T cons,k

i,n then
PKi is a member of V k

n committee.

In order to approve the results of the lottery, the participant broadcasts a
message with evidence ConsLotteryResTx(en, vvrf

i , Sid
k , πe

i,n).

2. Committee key aggregation. Once the new committee is selected, nodes in the
V k
n aggregate their individual public keys PKi into a joint one aPKk

n, which is
needed to sign the batch applying transactions with the external events: inbound
value transfers, outbound value transfers, boxes eliminations.

3. Committee transition. Nodes in the V k
n−1 publish cross-chain mes-

sage mk
n : (aPKk

n, σ
k
n−1), where σk

n−1 is an aggregated signature such that
verify : (σk

n−1, aPKk
n−1,m

k
n) = 1. Finally, vaults are updated such that

vaultk{(en−1, aPKk
n−1)} := (en, aPKk

n).

24



5.9.4 Registration

Any Spectrum stakeholder can register to become a committee member of his local
system Sk. To get a chance to be included in the set of validators V k

n of the epoch
en participant PKi should register in the lottery during the epoch en−3 by publishing
his verification tuple (vvrf

i , vkes
i ,Sset

i ) into the L+. Once Kf blocks are added on top of
this publication the participant is considered as verified. Before verification, PKi must
synchronizes with the network by restoring the current chain C from the genesis block
B0 received from the functionality FInit. He also must adjust his local clock based on the
synchronization beacons of the current global epoch using the functionality GImpLClock.
When all synchronization processes are completed, PKi is considered a valid participant
of the Spectrum protocol.

In the manner described, the Spectrum protocol reaches consensus and implements
the cross-chain interoperability. Our solution is fairly decentralized, fast and scalable,
and thus can be used in a large number of applications and scenarios.

6 Applications

6.1 Decentralized Cross-Chain Oracle
The system is capable of providing a notarized set of events observed in supported
external system be it a blockchain or general data source(s). Cross-Chain Oracle is
simple yet opens the door for interoperability for all dApps on Layer1.

6.2 Custodial Asset Management
In custodial mode of operation the system is capable of managing user assets which are
stored on corresponding blockchains in vaults which were defined previously.

Natively Cross-Chain Applications Decentralized custodial management in con-
junction with a computational layer can be highly beneficial for expanding the capa-
bilities of the system. This moves us beyond simple bridges to what we call Natively
Cross-Chain Applications (NCCAs).

NCCAs are applications that are deployed in cross-chain network and are capable
of interacting with other blockchains without the need of external oracles or bridges.
Compared to single-chain dApps, NCCAs unlocks an additional functionality by tak-
ing advantage of multiple chains simultaneously. They make it possible to aggregate
fragmented liquidity on different chains into one chain or a coordinated pool of assets
and improve the user experience by enabling the localization and customization of pa-
rameters and feature sets of the same application on different chains. These unique
advantages make them the future of web3 dApps.

25



References
[1] Dr Miraz and David Donald. Atomic Cross-chain Swaps: Development, Trajectory

and Potential of Non-monetary Digital Token Swap Facilities. Jan. 2019. doi:
10.33166/AETiC.2019.01.005. url: https://arxiv.org/pdf/1902.04471.pdf.

[2] Stefan Schulte et al. Towards Blockchain Interoperability. 2019. url: https://www.
semanticscholar.org/paper/Towards-Blockchain-Interoperability-Schulte-
Sigwart/6d777ba49d5e8f4d1a22b8ee287282fdceefeb8d.

[3] Soohyeong Kim, Yongseok Kwon, and Sunghyun Cho. A Survey of Scalability
Solutions on Blockchain. Oct. 2018. doi: 10 . 1109 / ICTC . 2018 . 8539529. url:
https://ieeexplore.ieee.org/document/8539529.

[4] Vitalik Buterin. Chain Interoperability. 2016. url: https : / / allquantor . at /
blockchainbib/pdf/vitalik2016chain.pdf.

[5] Rafael Belchior et al. A Survey on Blockchain Interoperability: Past, Present, and
Future Trends. 2021. arXiv: 2005.14282 [cs.DC]. url: https://arxiv.org/abs/
2005.14282.

[6] Gang Wang. SoK: Exploring Blockchains Interoperability. Cryptology ePrint
Archive, Paper 2021/537. https : / / eprint . iacr . org / 2021 / 537. 2021. url:
https://eprint.iacr.org/2021/537.

[7] Randhir Kumar and Rakesh Tripathi. Content-Based Transaction Access From
Distributed Ledger of Blockchain Using Average Hash Technique. Jan. 2021. doi:
10 . 4018 / 978 - 1 - 7998 - 3295 - 9 . ch003. url: https : / / www . researchgate .
net / publication / 348120393 _ Content - Based _ Transaction _ Access _ From _
Distributed_Ledger_of_Blockchain_Using_Average_Hash_Technique.

[8] Babu Pillai, Kamanashis Biswas, and Vallipuram Muthukkumarasamy. Blockchain
Interoperable Digital Objects. June 2019. doi: 10.1007/978-3-030-23404-1_6.
url: https://www.researchgate.net/publication/333860173_Blockchain_
Interoperable_Digital_Objects.

[9] Damiano Di Francesco Maesa and Paolo Mori. Blockchain 3.0 applications survey.
2020. doi: https : / / doi . org / 10 . 1016 / j . jpdc . 2019 . 12 . 019. url: https :
//www.sciencedirect.com/science/article/pii/S0743731519308664.

[10] D. Balazs. Herdius whitepaper. 2017. url: https://herdius.com/whitepaper/
HerdiusTechnicalPaper.pdf.

[11] Eder John Scheid et al. Bifröst: a Modular Blockchain Interoperability API.
Oct. 2019. doi: 10 . 1109 / LCN44214 . 2019 . 8990860. url: https : / / www .
researchgate.net/publication/339269755_Bifrost_a_Modular_Blockchain_
Interoperability_API.

[12] S. Thomas and E. Schwartz. A protocol for interledger payments. 2015. url: https:
//interledger.org/interledger.pdf.

[13] Reza M. Parizi et al. Integrating Privacy Enhancing Techniques into Blockchains
Using Sidechains. 2019. doi: 10.1109/CCECE.2019.8861821. url: https://arxiv.
org/pdf/1906.04953.pdf.

[14] Amritraj Singh et al. Sidechain technologies in blockchain networks: An examina-
tion and state-of-the-art review. 2020. doi: https://doi.org/10.1016/j.jnca.
2019.102471. url: https://www.sciencedirect.com/science/article/pii/
S1084804519303315.

[15] Intro to loom network — loom sdk. 2019. url: https://loomx.io/developers/
en/intro-to-loom.html.

26

https://doi.org/10.33166/AETiC.2019.01.005
https://arxiv.org/pdf/1902.04471.pdf
https://www.semanticscholar.org/paper/Towards-Blockchain-Interoperability-Schulte-Sigwart/6d777ba49d5e8f4d1a22b8ee287282fdceefeb8d
https://www.semanticscholar.org/paper/Towards-Blockchain-Interoperability-Schulte-Sigwart/6d777ba49d5e8f4d1a22b8ee287282fdceefeb8d
https://www.semanticscholar.org/paper/Towards-Blockchain-Interoperability-Schulte-Sigwart/6d777ba49d5e8f4d1a22b8ee287282fdceefeb8d
https://doi.org/10.1109/ICTC.2018.8539529
https://ieeexplore.ieee.org/document/8539529
https://allquantor.at/blockchainbib/pdf/vitalik2016chain.pdf
https://allquantor.at/blockchainbib/pdf/vitalik2016chain.pdf
https://arxiv.org/abs/2005.14282
https://arxiv.org/abs/2005.14282
https://arxiv.org/abs/2005.14282
https://eprint.iacr.org/2021/537
https://eprint.iacr.org/2021/537
https://doi.org/10.4018/978-1-7998-3295-9.ch003
https://www.researchgate.net/publication/348120393_Content-Based_Transaction_Access_From_Distributed_Ledger_of_Blockchain_Using_Average_Hash_Technique
https://www.researchgate.net/publication/348120393_Content-Based_Transaction_Access_From_Distributed_Ledger_of_Blockchain_Using_Average_Hash_Technique
https://www.researchgate.net/publication/348120393_Content-Based_Transaction_Access_From_Distributed_Ledger_of_Blockchain_Using_Average_Hash_Technique
https://doi.org/10.1007/978-3-030-23404-1_6
https://www.researchgate.net/publication/333860173_Blockchain_Interoperable_Digital_Objects
https://www.researchgate.net/publication/333860173_Blockchain_Interoperable_Digital_Objects
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.12.019
https://www.sciencedirect.com/science/article/pii/S0743731519308664
https://www.sciencedirect.com/science/article/pii/S0743731519308664
https://herdius.com/whitepaper/HerdiusTechnicalPaper.pdf
https://herdius.com/whitepaper/HerdiusTechnicalPaper.pdf
https://doi.org/10.1109/LCN44214.2019.8990860
https://www.researchgate.net/publication/339269755_Bifrost_a_Modular_Blockchain_Interoperability_API
https://www.researchgate.net/publication/339269755_Bifrost_a_Modular_Blockchain_Interoperability_API
https://www.researchgate.net/publication/339269755_Bifrost_a_Modular_Blockchain_Interoperability_API
https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
https://doi.org/10.1109/CCECE.2019.8861821
https://arxiv.org/pdf/1906.04953.pdf
https://arxiv.org/pdf/1906.04953.pdf
https://doi.org/https://doi.org/10.1016/j.jnca.2019.102471
https://doi.org/https://doi.org/10.1016/j.jnca.2019.102471
https://www.sciencedirect.com/science/article/pii/S1084804519303315
https://www.sciencedirect.com/science/article/pii/S1084804519303315
https://loomx.io/developers/en/intro-to-loom.html
https://loomx.io/developers/en/intro-to-loom.html


[16] Jonas David Nick. Liquid: A Bitcoin Sidechain. 2020. url: https://blockstream.
com/assets/downloads/pdf/liquid-whitepaper.pdf.

[17] Poa-network-whitepaper. 2018. url: https://github.com/poanetwork/wiki/
wiki/POA-Network-Whitepaper.

[18] J. Chow. Btc relay. 2016. url: http://btcrelay.org/.

[19] N. Rush L. Luu and N. Lin. Peacerelay: Connecting the many, ethereum
blockchains. 2019. url: https://github.com/KyberNetwork/peace-relay.

[20] Hyperledger cactus whitepaper. 2020. url: https://github.com/hyperledger/
cactus.

[21] Philipp Frauenthaler et al. Testimonium: A Cost-Efficient Blockchain Relay. Feb.
2020. url: https://arxiv.org/abs/2002.12837.

[22] Iddo Bentov et al. Tesseract: Real-Time Cryptocurrency Exchange using Trusted
Hardware. Cryptology ePrint Archive, Paper 2017/1153. https://eprint.iacr.
org/2017/1153. 2017. url: https://eprint.iacr.org/2017/1153.

[23] Jeff Burdges et al. Overview of Polkadot and its Design Considerations. Cryptology
ePrint Archive, Paper 2020/641. https://eprint.iacr.org/2020/641. 2020. url:
https://eprint.iacr.org/2020/641.

[24] J. Kwon and E. Buchman. Cosmos whitepaper. 2019. url: https://v1.cosmos.
network/resources/whitepaper.

[25] Wanchain: Building super financial markets for the new digital economy. 2017.
url: https://wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf.

[26] Ark ecosystem whitepaper. 2019. url: https://ark.io/Whitepaper.pdf.

[27] Quant overledger whitepaper. 2018. url: https : / / uploads - ssl . webflow .
com/6006946fee85fda61f666256/60211c93f1cc59419c779c42_Quant_Overledger_
Whitepaper_Sep_2019.pdf.

[28] Zhuotao Liu et al. HyperService: Interoperability and Programmability Across Het-
erogeneous Blockchains. London, United Kingdom, 2019. doi: 10.1145/3319535.
3355503. url: https://arxiv.org/abs/1908.09343.

[29] Gang Wang et al. SMChain: A Scalable Blockchain Protocol for Secure Meter-
ing Systems in Distributed Industrial Plants. Cryptology ePrint Archive, Paper
2019/1401. https://eprint.iacr.org/2019/1401. 2019. doi: 10.1145/3302505.
3310086. url: https://eprint.iacr.org/2019/1401.

[30] Eder J. Scheid et al. PleBeuS: a Policy-based Blockchain Selection Framework.
2020. doi: 10.1109/NOMS47738.2020.9110386. url: https://ieeexplore.ieee.
org/document/9110386.

[31] Enrique Fynn, Alysson Bessani, and Fernando Pedone. Smart Contracts on the
Move. June 2020. doi: 10.1109/DSN48063.2020.00040. url: https://arxiv.org/
abs/2004.05933.

[32] Interledger protocol v4. 2020. url: https : / / interledger . org / rfcs / 0027 -
interledger-protocol-4/.

[33] Aleksei Pupyshev et al. Gravity: a blockchain-agnostic cross-chain communication
and data oracles protocol. July 2020. url: https://arxiv.org/abs/2007.00966.

[34] Aleksei Pupyshev et al. SuSy: a blockchain-agnostic cross-chain asset transfer gate-
way protocol based on Gravity. Aug. 2020. url: https://arxiv.org/abs/2008.
13515.

27

https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf
https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper
http://btcrelay.org/
https://github.com/KyberNetwork/peace-relay
https://github.com/hyperledger/cactus
https://github.com/hyperledger/cactus
https://arxiv.org/abs/2002.12837
https://eprint.iacr.org/2017/1153
https://eprint.iacr.org/2017/1153
https://eprint.iacr.org/2017/1153
https://eprint.iacr.org/2020/641
https://eprint.iacr.org/2020/641
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf
https://ark.io/Whitepaper.pdf
https://uploads-ssl.webflow.com/6006946fee85fda61f666256/60211c93f1cc59419c779c42_Quant_Overledger_Whitepaper_Sep_2019.pdf
https://uploads-ssl.webflow.com/6006946fee85fda61f666256/60211c93f1cc59419c779c42_Quant_Overledger_Whitepaper_Sep_2019.pdf
https://uploads-ssl.webflow.com/6006946fee85fda61f666256/60211c93f1cc59419c779c42_Quant_Overledger_Whitepaper_Sep_2019.pdf
https://doi.org/10.1145/3319535.3355503
https://doi.org/10.1145/3319535.3355503
https://arxiv.org/abs/1908.09343
https://eprint.iacr.org/2019/1401
https://doi.org/10.1145/3302505.3310086
https://doi.org/10.1145/3302505.3310086
https://eprint.iacr.org/2019/1401
https://doi.org/10.1109/NOMS47738.2020.9110386
https://ieeexplore.ieee.org/document/9110386
https://ieeexplore.ieee.org/document/9110386
https://doi.org/10.1109/DSN48063.2020.00040
https://arxiv.org/abs/2004.05933
https://arxiv.org/abs/2004.05933
https://interledger.org/rfcs/0027-interledger-protocol-4/
https://interledger.org/rfcs/0027-interledger-protocol-4/
https://arxiv.org/abs/2007.00966
https://arxiv.org/abs/2008.13515
https://arxiv.org/abs/2008.13515


[35] Christian Badertscher et al. Ouroboros Genesis: Composable Proof-of-Stake
Blockchains with Dynamic Availability. Oct. 2018. doi: 10.1145/3243734.3243848.
url: https://eprint.iacr.org/2018/378.pdf.

[36] Christian Badertscher et al. Ouroboros Chronos: Permissionless Clock Synchro-
nization via Proof-of-Stake. Cryptology ePrint Archive, Paper 2019/838. https:
//eprint.iacr.org/2019/838. 2019. url: https://eprint.iacr.org/2019/838.

[37] Alexei Zamyatin et al. SoK: Communication Across Distributed Ledgers. Cryp-
tology ePrint Archive, Paper 2019/1128. https://eprint.iacr.org/2019/1128.
2019. url: https://eprint.iacr.org/2019/1128.

[38] Aggelos Kiayias et al. Ouroboros: A Provably Secure Proof-of-Stake Blockchain
Protocol. Cryptology ePrint Archive, Paper 2016/889. https://eprint.iacr.
org/2016/889. 2016. url: https://eprint.iacr.org/2016/889.

[39] Miguel Castro. Practical Byzantine Fault Tolerance. Apr. 2001. url: https://
pmg.csail.mit.edu/papers/osdi99.pdf.

[40] Bernardo David et al. Ouroboros Praos: An adaptively-secure, semi-synchronous
proof-of-stake protocol. Cryptology ePrint Archive, Paper 2017/573. https : / /
eprint.iacr.org/2017/573. 2017. url: https://eprint.iacr.org/2017/573.

[41] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. May 2009.
url: http://www.bitcoin.org/bitcoin.pdf.

[42] Eleftherios Kokoris-Kogias et al. Enhancing Bitcoin Security and Performance
with Strong Consistency via Collective Signing. 2016. arXiv: 1602.06997 [cs.CR].
url: https://arxiv.org/abs/1602.06997.

[43] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency with Proof-
of-Stake. 2012. url: https://api.semanticscholar.org/CorpusID:42319203.

[44] Yossi Gilad et al. Algorand: Scaling Byzantine Agreements for Cryptocurrencies.
Cryptology ePrint Archive, Paper 2017/454. https://eprint.iacr.org/2017/454.
2017. url: https://eprint.iacr.org/2017/454.

[45] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable Random Functions.
USA, 1999. url: https://ieeexplore.ieee.org/document/814584.

[46] Moni Naor and Asaf Ziv. Primary-Secondary-Resolver Membership Proof Systems.
Cryptology ePrint Archive, Paper 2014/905. https://eprint.iacr.org/2014/905.
2014. url: https://eprint.iacr.org/2014/905.

[47] Christian Badertscher et al. On UC-Secure Range Extension and Batch Verifica-
tion for ECVRF. Cryptology ePrint Archive, Paper 2022/1045. https://eprint.
iacr.org/2022/1045. 2022. url: https://eprint.iacr.org/2022/1045.

[48] Claus Schnorr. Efficient signature generation by smart cards. Jan. 1991. doi:
10.1007/BF00196725. url: https://link.springer.com/article/10.1007/
BF00196725.

[49] Ewa Syta et al. Keeping Authorities “Honest or Bust” with Decentralized Witness
Cosigning. May 2016. doi: 10.1109/SP.2016.38. url: https://arxiv.org/abs/
1503.08768.

[50] K. Itakura. A public-key cryptosystem suitable for digital multisignatures. 1983.
url: https://api.semanticscholar.org/CorpusID:60170133.

[51] Olivier Bégassat et al. Handel: Practical Multi-Signature Aggregation for Large
Byzantine Committees. 2019. arXiv: 1906.05132 [cs.DC]. url: https://arxiv.
org/abs/1906.05132.

28

https://doi.org/10.1145/3243734.3243848
https://eprint.iacr.org/2018/378.pdf
https://eprint.iacr.org/2019/838
https://eprint.iacr.org/2019/838
https://eprint.iacr.org/2019/838
https://eprint.iacr.org/2019/1128
https://eprint.iacr.org/2019/1128
https://eprint.iacr.org/2016/889
https://eprint.iacr.org/2016/889
https://eprint.iacr.org/2016/889
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://eprint.iacr.org/2017/573
https://eprint.iacr.org/2017/573
https://eprint.iacr.org/2017/573
http://www.bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/1602.06997
https://arxiv.org/abs/1602.06997
https://api.semanticscholar.org/CorpusID:42319203
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://ieeexplore.ieee.org/document/814584
https://eprint.iacr.org/2014/905
https://eprint.iacr.org/2014/905
https://eprint.iacr.org/2022/1045
https://eprint.iacr.org/2022/1045
https://eprint.iacr.org/2022/1045
https://doi.org/10.1007/BF00196725
https://link.springer.com/article/10.1007/BF00196725
https://link.springer.com/article/10.1007/BF00196725
https://doi.org/10.1109/SP.2016.38
https://arxiv.org/abs/1503.08768
https://arxiv.org/abs/1503.08768
https://api.semanticscholar.org/CorpusID:60170133
https://arxiv.org/abs/1906.05132
https://arxiv.org/abs/1906.05132
https://arxiv.org/abs/1906.05132


[52] Tal Malkin, Daniele Micciancio, and Sara Miner. Composition and Efficiency
Tradeoffs for Forward-Secure Digital Signatures. Cryptology ePrint Archive, Pa-
per 2001/034. https://eprint.iacr.org/2001/034. 2001. url: https://eprint.
iacr.org/2001/034.

[53] Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient generic forward-secure
signatures with an unbounded number of time periods. Amsterdam, The Nether-
lands: IACR, Apr. 2002. url: https://cseweb.ucsd.edu/~daniele/papers/MMM.
html.

29

https://eprint.iacr.org/2001/034
https://eprint.iacr.org/2001/034
https://eprint.iacr.org/2001/034
https://cseweb.ucsd.edu/~daniele/papers/MMM.html
https://cseweb.ucsd.edu/~daniele/papers/MMM.html


Appendices

A A Complete Description of the Spectrum Protocol
The purpose of this section is to formally specify the code of the Spectrum protocol that
each participant executes. Each party P is assigned a session ID, sid. Party is connected
to all global setups and functionalities with which it shares the same session ID.

A.1 The Main Protocol

Spectrum protocol uses a number of functionalities, namely, GLedger,GImpLClock and
F∆

N-MC which are described in detail in [36].
All protocol participants use the imperfect local clocks functionality GImpLClock to

proceed at approximately the same speed with the upper bound ∆clock on the drift
between any two honest parties. We also assume a diffusion network in which all mes-
sages sent by honest parties are guaranteed to be fetched by other protocol participants
after a specific delay ∆net. Additionally, the network guarantees that once a message
has been fetched by an honest party, this message is fetched by any other honest party
within a delay of at most ∆net. We will use a broadcasting network for message diffusion
described by the functionality F∆

N-MC.
The main protocol is as follows:

Protocol Spectrum(P, sid;GLedger,GImpLClock,F∆
N-MC)

Global variables:

– Read-only: R, lVRF,Kf,Kg,S
set = {Sid

k }Kk=1, flead = {f lead
k }Kk=1, fcons =

{f cons
k }Kk=1.

// Hereinafter, the indices and values of epochs and slots are

// interchangeable, i.e. e_n = n, s_j = j. Also, the id of the

// k-th connected system S_k usualy is simply denoted by k.

– Read-write: vvrf
P , vkes

P , slj , en,S
set
P ,Tcons,Tlead,Tsync,

localTime, lastTick,EpochUpdate(.), statej , buffer, syncBuffer, isSync,

fetchCompleted, futureChains.

// Bold font upper denotes the sets corresponding to the set

// of external systems (with id-s in the S^set) to which the

// participant P is connected.

Interacting with the main Ledger: Upon receiving a ledger-specific input I verify
first that all resources are available. If not all resources are available, then ignore the
input, otherwise execute one of the following steps depending on the input I:

– If I = (SUBMIT, sid, tx) :

set buffer← buffer||tx;
send (MULTICAST, sid, tx) to F∆

N-MC.

– If I = (MAINTAIN-LEDGER, P, sid) :

invoke the protocol LedgerMaintenance(P,R, sid, Cloc);

if LedgerMaintenance halts then halt the Spectrum protocol execution and ignore
all future inputs.

– If I = (READ, sid) :

return actual local chain state;

30



– If I = (EXPORT-TIME, sid) :

if isSync = false then return false to party P ;

Otherwise call UpdateTime(P,R) and do:

1. Set the highest epoch value en ← EpochUpdate(.).
2. Return (localTime, en) to the caller.

Handling calls to the shared setup:

– If I = (CLOCK-GET, sidC) : forward it to GImpLClock and return its response.

– If I = (CLOCK-UPDATE, sidC) : record that a clock-update was received in the
current round. If the party is registered to all its setups, then do nothing further.
Otherwise, do the following operations before concluding this round:

1. If this instance is currently time-aware but otherwise stalled or offline, then
set localTime ← UpdateTime(P,R) and update the KES signing key using
FKES. If the party has passed a synchronization slot, then set isSync← false.

2. If this instance is only stalled but isSync = true, then additionally fetch actual
chains, extract all new synchronization beacons from the fetched chains,
record their arrival times and set fetchCompleted ← true. Any unfinished
interruptible execution of this round is marked as completed.

3. Forward (CLOCK-UPDATE, sidC) to GImpLClock to finally conclude the round.

– If I = (EVAL, x) : forward x to the H and output the response.

A.2 Fetching information, stake distribution and time update

Time Update.

Protocol UpdateTime(P,R)

//NB: Only executed if time-aware.
1: Send (CLOCK-GET, sidC) to GImpLClock and parse tick from the response.
2: if lastTick ̸= tick then
3: Set lastTick← tick.
4: Set localTime← localTime + 1.
5: Set fetchCompleted← false.
6: end if
7: Set e← ⌈localTime / R⌉.
8: Set sl← localTime.

Synchronization Procedure. The synchronization procedure runs on epoch boundary
to synchronize time between all committee members.

Protocol
SyncProc(P, sid, R,Kf,Kg,Sid = {Sid

k }Kk=1, flead = {f lead
k }Kk=1, fcons = {f cons

k }Kk=1)

1: Set i← ⌈localTime / R⌉.
2: if (not EpochUpdate(i) = Done) then
3: EpochUpdate(i)← Done.
4: Parse bset′

i ← Cloc[(i− 1) ·R+ 2 / 3 ·R].
5: Let j ← i− 1.
6: bset

i ← {bsync|bsync ∈ bset′
i ∧ bsync.get(sl) ∈ [R · j, R · j + 1 / 6 ·R]}.

7: for all bsync ∈ bset
i do

8: if bsync ∈ syncBuffer then
9: Parse bsync as (vvrf, sl, πsl, slrec).

31



10: Set diffb = sl − slrec.
11: else
12: bset

i ← bset
i / {bsync}.

13: end if
14: end for
15: Set shifti ← med{diffb|bsync ∈ bset

i }).
16: for all bsync|bsync ∈ bset

i } ∧ bsync.get(slrec) = (sl′, temp) do
17: Set slrec ← (sl′ + shifti, final).
18: end for
19: if shifti > 0 then // Move fast forward.
20: Set newTime← localTime + shifti.
21: Set Mchains ←Msync ← ∅.
22: while localTime < newTime do
23: localTime← localTime + 1.
24: Let N0 be the subsequence of futureChains | ∀B ∈ C : B.get(sl) ≤

localTime.
25: for C ∈ N0 do
26: Remove C from futureChains.
27: end for
28: Set Cloc ← SelectChain(P, sid, Cloc, R,Kf,Kg,N0,Sid, flead).
29: Call UpdateStakeDistribution(P,R,Kf, Cloc,Sid, flead, fcons).
30: Call LedgerMaintenance(P, sid, Cloc, R,Kf,Kg,Sid, flead, fcons)

but instead of broadcasting new chains and beacons, add them to
the local sets Mchains and Msync respectively.

31: end while
32: Broadcast Mchains and Msync.
33: else if shifti < 0 then // Need to wait.
34: Set twork ← localTime.
35: Set localTime← localTime + shifti.
36: end if
37: end if

Updating stake distribution. The stake distributions for epochs are defined in the
local chain (and all associated state-variables), and are computed as follows:

Protocol UpdateStakeDistribution(P,R,Kf, Cloc,Sid = {Sid
k }Kk=1, flead =

{f lead
k }Kk=1, fcons = {f cons

k }Kk=1)

1: Set en ← ⌈sl / R⌉.
// Main ledger state_m is calculated according to
// the last block produced up to m-th slot.

2: Parse state(n−2)·R ← Cloc.
3: Parse state(n−4)·R ← Cloc.

// Set epoch randomness:
4: Set ηn−2 ← FLB(en−2, Cloc). // For the consensus lottery.
5: Set ηn ← FLB(en, Cloc). // For the leader and sync lotteries.

// Update stakeholders distribution for the consensus group lottery:
6: for ∀Sid

k ∈ Sid do
7: Parse verified and equipped with Fk

ConnSys functionality stakeholders distribution
Sver,n−4
k from state(n−4)·R .

8: end for
// Update stakeholders distributions for the leader lottery:

9: for ∀Sid
k ∈ Sid do

32



10: Parse k-th committee stakeholders distribution Scons,n−2
k

from the state(n−2)·R.
11: end for

// Update stakeholders distribution for the synchronization lottery:
12: Parse all committees stakeholders distribution Scons,n−2 from the state(n−2)·R.

// Here and below S_k^{\text{id}} is denoted simply by index k.
// Set lotteries thresholds:

13: for ∀Sid
k ∈ Sid do

14: Calculate relative stake αn−3
P,ver using Sver,n−3

k .
15: Calculate relative stake αn−2

P,k using Scons,n−2
k .

16: Set consensus group lottery threshold for k-th committee as T cons,k
P,n−2 =

ϕfcons
k

(αn−3
P,ver).

17: Set leader lottery threshold as T lead,k
P,n = ϕf lead

k
(αn−2

P,k ).
18: end for
19: Calculate relative stake αn−2

P using Scons,n−2.
20: Set synchronization lottery threshold as T sync

P ′,n = 2lVRF · αn−2
P .

21: return (en, state(n−3)·R, Vver, ηn, ηn−2, {T cons,k
P,n−2}Kk=1, {T

lead,k
P,n }Kk=1, T

sync
P,n )

Processing beacons. The following procedure records and processes beacons, their
arrival times, and filters out invalid beacons:

Protocol ProcessBeacons(P, sid, R, lVRF,Kf, Cloc,b
set = {bsync

n }Nn=1)

1: for all bsync
n ∈ bset|bsync

n .get(slrecn ) = ⊥ do
2: syncBuffer← syncBuffer ∪ {bsync

n }.
3: Set e← ⌊bsync

n .get(sl) / R⌋.
4: if isSync ∧ (epochUpdate(e - 1) = Done) then
5: Set slrecn ← (localTime, final).
6: else

Set slrecn ← (localTime, temp).
7: end if
8: end for

// Buffer cleaning. Keep one representative arrival time.
9: if isSync then

10: Set syncBuffervalid ← {bsync′ ∈ syncBuffer|ValidBeacon(P, sid, R, lVRF,
Kf, b

sync′, Cloc) = true}.
11: for all bsync ∈ syncBuffervalid do
12: Parse bsync as (vvrf, sl, πsl).
13: Set Q← {bsync′ ∈ syncBuffervalid|vvrf = vvrf′ ∧ sl = sl′)}.
14: Set bsync, min ← minsl(Q).
15: Remove from the syncBuffer all beacons except the bsync, min.
16: end for
17: end if

A.3 Validity Checks

Block validation. The core procedure to validate an incoming blocks. Block validation
implies a procedure for preparing the necessary constants to check the validity of the
party P ′ to issue the block. The preparation algorithm is described below:

Protocol PrepareForBlockValidation(P, sid, sl, R, lVRF,Kf, Cloc, v
vrf
P ′ ,Sid =

{Sid
k }Kk=1, flead = {f lead

k }Kk=1, fcons = {f cons
k }Kk=1)

33



// Parse and calculate all necessary values for block validation.
1: Set en ← ⌈sl / R⌉. // Main ledger state_m is calculated according to

// the last block produced up to m-th slot.
2: Parse state(n−2)·R ← Cloc.
3: Parse state(n−4)·R ← Cloc.

// Set epoch randomness:
4: Set ηn−2 ← FLB(en−2, Cloc). // For the consensus lottery.
5: Set ηn ← FLB(en, Cloc). // For the leader and sync lotteries.

// Stakeholders distribution used for the consensus group lottery:
6: Parse verified and equipped with Fk

ConnSys functionality stakeholders distribution
Sver,n−4
k from state(n−4)·R.

// Stakeholders distribution used for the leader lottery:
7: Parse k-th committee stakeholders distribution Scons,n−2

k from the state(n−2)·R.
// Stakeholders distribution used for the synchronization lottery:

8: Parse all committees stakeholders distribution Scons,n−2 from the state(n−2)·R.
// Here and below S_k^{\text{id}} is denoted simply by index k.
// Set lotteries thresholds:

9: Calculate participant’s relative stake αn−3
P ′,ver using Sver,n−3

k .
10: Calculate participant’s relative stake αn−2

P ′,k using Scons,n−2
k .

11: Calculate participant’s relative stake αn−2
P ′ using Scons,n−2.

12: Set participant’s consensus group lottery threshold for k-th committee as T cons,k
P ′,n−2 =

ϕfcons
k

(αn−3
P ′,ver).

13: Set participant’s leader lottery threshold as T lead,k
P ′,n = ϕf lead

k
(αn−2

P ′,k).
14: Set participant’s synchronization lottery threshold as T sync

P ′,n = 2lVRF · αn−2
P ′ .

15: return (en, state(n−3)·R, Vver, ηn, ηn−2, T
cons,k
P ′,n−2, T

lead,k
P ′,n , T sync

P ′,n)

Main Block Validation Protocol is as follows:

Protocol IsValidBlock(P, sid, R, lVRF,Kf, Cloc, B,Sid = {Sid
k }Kk=1, flead =

{f lead
k }Kk=1, fcons = {f cons

k }Kk=1)

// All indexes except the epoch index are omitted.
1: Parse B as (h, sl, vvrf, Sid

k , πsl, σKES).
// Value h above is a block body hash.

2: Parse state← Cloc.
// Prepare constants:

3: Select (f lead
k , f cons

k ) related to the given Sid
k .

4: Set preparation_out ← PrepareForBlockValidation(P, sid, sl, R, lVRF,Kf, Cloc,
vvrf, Sid

k , f lead
k , f cons

k ).
5: Set (en, state(n−4)·R, Vver, ηn, ηn−2, T

cons, T lead, T sync) = preparation_out.
// Check consensus membership:

6: Parse Sid,P ′ related to the given vvrf from Vver.
// P' above is the same authority as v^vrf. We used this notation
// to separete leader's S_{id} set from the global one.

7: Set valid_committee← (Sid
k ∈ Sid,P ′) ∧ (Sid,P ′ ⊂ Sid).

8: Parse πe related to vvrf from the state.
9: Set valid_epoch_proof← FVRF.verify(vvrf,H(ηn−2||en), πe).

10: Extract the random value re ← πe.
11: Set ycons ← H(re||CONS||Sid

k ).
12: Set valid_member← valid_committee ∧ valid_epoch_proof ∧

(vvrf ∈ Vver) ∧ (ycons < T cons).
// Check the leadership:

34



13: Set valid_slot_proof← FVRF.verify( vvrf,H(ηn||sl), πsl).
14: Extract the random value rsl ← πsl.
15: Set ylead ← H(rsl||LEAD||Sid

k ).
16: Set valid_leader← (ylead < T lead) ∧ valid_slot_proof.

// Check KES signature:
17: Parse vkes from Vver.
18: Set state_hash← H(state).
19: Set πsl

h ← H(πsl).
20: Set valid_signature← FKES.verify( H(h||state_hash||sl||πsl

h ), σKES, v
kes).

// Check synchronization beacons:
21: Parse bset from state.
22: if ∃bsync ∈ bset : sl > (en − 1) ·R+ 2 ·R/3 then
23: Set valid_sync← false.
24: else if ∃bsync ∈ B : (bsync.get(sl) > sl) ∨ (bsync.get(sl) /∈ [(en − 1) · R + 1, en · R])

then
25: Set valid_sync← false.
26: end if
27: for each bsync ∈ B do
28: Parse bsync as (vvrf′ , sl′, πsl′).
29: if Cloc contains more than one beacon with (vvrf′ , sl′, .) then
30: Set valid_sync← false.
31: end if
32: Set valid_slot_proof← FVRF.verify( vvrf,H(ηn||sl′), πsl′).
33: Extract the random value rsl′ ← πsl′ .
34: Set ysync ← H(rsl′||SYNC).
35: Set valid_sync← valid_slot_proof ∧ (ysync < T sync).
36: end for
37: if (valid_parent ∨ valid_member ∨ valid_proof ∨ valid_leader ∨ valid_signature ∨

valid_sync) then
38: return false
39: end if

Chain validation. The core procedure to distinguish valid chains from the invalid is
as follows:

Protocol IsValidChain(P, sid, C, R, lVRF,Kf,Sid = {Sid
k }Kk=1, flead = {f lead

k }Kk=1, fcons =
{f cons

k }Kk=1)

1: if ∃B ∈ C : B.get(sl) > localTime then
2: return false
3: end if
4: for each ej ∈ C do // meaning for all unique e_j values for which

// there are blocks in the C.
5: for each block B ∈ C | B.get(sl) ∈ ej do

// Check parent:
6: Set valid_parent← (H(B−1) = h) ∧ (B−1.get(sl) < sl),

where B−1 is the last block before B.
7: Set valid_block← IsValidBlock(P, sid, R, lVRF,Kf, Cloc, B,Sid,

flead, fcons).
8: if (valid_block ∧ valid_parent) then
9: return false

10: end if
11: end for

35



12: end for
13: return true

The synchronisation beacon validity. Beacons validity is related to chain validity
as one has to verify validity of the leadership:

Protocol ValidBeacon(P, sid, R, lVRF,Kf, b
sync, Cloc)

1: Parse synchronization beacon bsync as (vvrf
P ′ , sl, πsl).

2: Set en ← ⌈sl / R⌉.
3: if ∄B ∈ Cloc|B.get(sl) ∈ en then
4: return false
5: end if

// Check synchronization lottery results for patry P':
6: Set ηn ← FLB(en, Cloc).
7: Parse state(n−2)·R ← Cloc.
8: Parse all committees stakeholders distribution Scons,n−2 from the state(n−2)·R.
9: Calculate participant’s relative stake αn−2

P ′ using Scons,n−2.
10: Set participant’s synchronization lottery threshold as T sync

P ′,n = 2lVRF · αn−2
P ′ .

11: Set valid_slot_proof← FVRF.verify( vvrf
P ′ ,H(ηn||sl), πsl).

12: Extract the random value rsl ← πsl.
13: Set ysync ← H(rsl||SYNC).
14: Set valid_sync← (ysync < T sync) ∧ valid_slot_proof.
15: return valid_sync

A.4 Chain Selection Rules

Chain selection consists of two steps: filtering out valid chains, and second compare
them using the Genesis rule [35].

Maximum Valid Rule. The Genesis chain selection rule:

Algorithm maxValidChain(Cloc,N = {Ci}Ni=1,Kf,Kg)

// Set local chain C_loc as initially maximum valid chain:
1: Set Cmax ← Cloc.
2: for each Ci ∈ N do
3: if Ci forks from Cmax at most Kf blocks then
4: if |Ci| > |Cmax| then
5: Set Cmax ← Ci.
6: else if |Ci| == |Cmax| then
7: Set Cmax ← maxStakeChain(Ci, Cmax).
8: end if
9: else

10: Let j ← max{j′ ≥ 0 | Cmax and Ci have the same block in slj′}.
11: if |Ci[j : j +Kg]| > |Cmax[j : j +Kg]| then
12: Set Cmax ← Ci.
13: else if |Ci| = |Cmax| then
14: Set Cmax ← maxStakeChain(Ci, Cmax).
15: end if
16: end if
17: end for
18: return Cmax

36



Maximum Stake Rule. Rule to resolve conflicts that arise after applying the Genesis
rule:

Algorithm maxStakeChain(Ci, Ci′)
1: if

∑
{Bk.get(s),∀Bk ∈ Ci} >

∑
{Bk.get(s),∀Bk ∈ Ci′} then

// Used above value s is the stake of the leader
// who produced the block B_k.

2: Set Cmax ← Ci.
3: else // It is assumed that the input chains are the same size.
4: Set Cmax ← Ci′ .
5: end if
6: return Cmax

Chain Selection Protocol. The main chain selection protocol is as follows:

Protocol SelectChain(P, sid, Cloc, R,Kf,Kg,N0,
Sid = {Sid

k }Kk=1, flead = {f lead
k }Kk=1, fcons = {f cons

k }Kk=1)

1: Initialize Nvalid ← ∅.
// Filter all valid chains:

2: for each C ∈ N0 do
3: Set is_valid_chain← IsValidChain(P, sid, C, R, lVRF,Kf,Sid,

flead, fcons).
4: if is_valid_chain = true then
5: Update Nvalid ← Nvalid ∪ C.
6: end if
7: end for

// Set local chain as maximum valid chain:
8: Set Cloc ← maxValidChain(Cloc,N0,Kf,Kg).

A.5 Ledger Maintenance

When a protocol is executed, every party P performs different actions depending on its
role and the current local time. The main logic with all necessary actions are included
into the main LedgerMaintenance procedure. At different points in time, participants
perform auxiliary protocols, which we will describe below.

Evaluation Protocol. In normal protocol execution, each participant performs the
following procedure:

Protocol EvaluationProcedure(P, sid, R, sl, Cloc,Sid)

// Synchronization lottery:
1: Set ysync ← H(rsl||SYNC).
2: Set valid_sync← ysync < T sync.
3: if valid_sync then
4: if sl ∈ [R · n,R · n+ 1 / 6 ·R] then
5: Set bsync ← (vvrf, sl, πsl).
6: Broadcast bsync to known peers.
7: end if
8: end if
9: for each Sid

k ∈ Sid do
// All participant's state constants involved are specific
to the k-th committee.

37



10: Select T lead related to the Sid
k .

// Leader lottery:
11: Set (rsl, πsl)← FVRF.eval(ηn||sl).
12: Set ylead ← H(rsl||LEAD||Sid

k ).
13: Set valid_leader← ylead < T lead.
14: if valid_leader then
15: Set actual state extracted from the buffer.
16: Set h← H(head(Cloc)). // head(C) gets the latest block from C.
17: if sl ∈ [R · n,R · n+ 2 / 3 ·R] then

// Set valid synchronization beacon set as:
18: bset ← {b′ ∈ syncBuffer|validBeacon(P, sid, R, lVRF,Kf, b

′, Cloc)
= true}.

19: for each b in bset do
20: Set sl∗ ← b.get(sl)).
21: Set vvrf∗ ← b.get(vvrf).
22: if (sl∗ > sl) ∨ (sl∗ ≥ (n− 1) ·R) ∨ (∃b′ ∈ Cloc|

(b′.get(vvrf)) = vvrf∗ ∧ b′.get(sl) = sl∗)) then
23: Remove b from the bset.
24: end if
25: end for
26: end if
27: Set state_hash← H(state).
28: Set πsl

h ← H(πsl).
29: Set σKES ← FKES.sign(H(h||state_hash||sl||πsl

h )).
30: Set B ← ((h, sl, state_hash, πsl

h ), sl, S
id
k , vvrf, πsl, σKES).

31: Update Cloc ← Cloc||B and broadcast it to all known peers.
32: end if
33: end for

Consensus Lottery Protocol. When moving between epochs, a new consensus group
must be selected. To do this, each participant performs the following protocol:

Protocol ConsensusLottery(P, sid, en, Cloc,Kf,Kg,Sid = {Sid
k }Kk=1, flead =

{f lead
k }Kk=1, fcons = {f cons

k }Kk=1)

// The lottery at the e_n > 2 selects committees for e_{n + 3}
1: Parse state(n−2)·R ← Cloc.
2: for each Sid

k ∈ Sid do
3: Set (re, πe)← FVRF.eval(H(ηn||en)).
4: Parse k-th committee stakeholders distribution Sn−2

k from the state(n−2)·R.
5: Calculate participant’s relative stake αn−2

P ′ using Sn−2
k .

6: Set participant’s consensus group lottery threshold for k-th committee
as T k

P ′,n−2 = ϕfcons
k

(αn−2
P ′ ).

7: Set ycons ← H(||re||CONS||Sid
k ).

8: Set is_member← ycons < T k
P ′,n−2.

9: if is_member = true then
10: Broadcast message with consensus membership proof

ConsLotteryResTx(en, vvrf
P , Sid

k , πe).
11: end if
12: end for

// Commit to participate in the e_{n + 3} consensus lottery:
13: Update the verification information broadcasting the VerificationUpdTx(vvrf,Sset

P ).

38



Main Ledger Maintenance Protocol.

Protocol LedgerMaintenance(P, sid, Cloc, R,Kf,Kg,Sid = {Sid
k }Kk=1, flead =

{f lead
k }Kk=1, fcons = {f cons

k }Kk=1)

// Normal operation:
1: Fetch the latest protocol data: ({Cm}Mm=1, {txk}Ki=k).
2: Add {Cm}Mm=1 into futureChains.
3: Add {txk}Kk=1 into buffer.
4: Call UpdateTime(P,R).

// Process arrived synchronisation beacons:
5: Extract beacons bset ← {bsync

n }Nn=1 contained in {Cm}Mm=1 and not yet contained in
syncBuffer.

6: Call ProcessBeacons(P, sid, R, lVRF,Kf, Cloc,b
set).

// Filter chains:
7: Let N0 be the subsequence of futureChains | ∀B ∈ C : B.get(sl) ≤ localTime.
8: for C ∈ N0 do
9: Remove C from futureChains.

10: end for
11: Set Cloc ← SelectChain(P, sid, Cloc, R,Kf,Kg,N0,Sid, flead, fcons)

// Perform actions according to the current local
// stage of the protocol:

12: Set sl← localTime.
13: if sl < slwork then
14: Call EvaluationProcedure(P, sid, R, sl, buffer, syncBuffer, Cloc,Sid).
15: Set slwork ← sl.
16: if sl mod R = 0 then
17: Call UpdateStakeDistribution(P,R,Kf, Cloc,Sid, flead, fcons).
18: Calculate en for the given sl.
19: Parse state(n−2)·R from Cloc.
20: for every party’s P k-th connected system do
21: Call ConsensusLottery(P, sid, en, Cloc,Kf,Kg,Sid, flead, fcons).
22: end for
23: Call SyncProc(P, sid, R,Kf,Kg,Sid, flead, fcons).
24: end if
25: end if

39



B List of Symbols
Functionalities:

❑ H – ideal hash function (random oracle).

❑ FVRF – verifiable random function.

❑ FKES – key evolving digital signature scheme.

❑ FLB – leaky beacon.

❑ FAggSig – collective signature aggregation functionality.

❑ FInit – functionality providing the genesis block.

❑ F∆
N-MC – functionality providing the genesis block.

❑ Fk
ConnSys – functionality to interact with k-th connected distributed system Sk.

❑ GImpLClock – imperfect local clock functionality.

❑ GPerfLClock – perfect local clock functionality.

❑ GLedger – the ledger functionality.

Main State Variables of The Spectrum protocol:

❑ slj ∈ N – the smallest discrete time unit used in the protocol.

❑ en ∈ N – the largest discrete time unit used in the protocol.

❑ R ∈ N – epoch boundaries, each epoch consists of R slots.

❑ lVRF – the output length of the VRF in bits.

❑ Uc – transaction confirmation time in slots.

❑ Kf ∈ N – number of blocks to achieve finality in the L+.

❑ Kg ∈ N – number of blocks to consider chain growth (is used in chain selection).

❑ Sset = {Sid
k }Kk=1 – set of connected distributed systems’ ids (i.e. K committees of

validators for each system).

❑ flead = {f lead
k }Kk=1 – set of target number of leaders per slot in each k-th committee.

❑ fcons = {f cons
k }Kk=1 – set of target fraction of each k committee members.

Main Spectrum’s Consensus Entities, Actors and Variables:

❑ L+ – the main Spectrum’s super-ledger (stores blocks).

❑ Lloc,k – ledger of the k-th connected distributed system (stores notarized reports).

❑ V k
n – validators set (committee) of k-th connected distributed system active in the

epoch en.

40



Main State Variables of The Spectrum protocol participant:

❑ P – protocol participant (party).

❑ PKP – public key of the party P .

❑ PKk
P – public key of the k-th connected external system of the party P .

❑ sP – stake value of the party P .

❑ Ssync,n – stakeholders distribution of all K committees members for the epoch n
(used for the synchronization lottery).

❑ Scons,n
k – stakeholders distribution of the V k

n+2 members calculated for the epoch
n (used for the leader lottery).

❑ Sver,n
k – stakeholders distribution of verified and equipped with functionalities
Fk

ConnSys participants fot the epoch en (used for the consensus lottery to select
V k
n+4).

❑ ηn – random seed of the epoch en (epoch randomness).

❑ vvrf
P – VRF public key of the party P .

❑ vkes
P – KES scheme public of the party P .

❑ πsl
P,j – VRF slot proof produced by the party P for slot slj (used in the leader

lottery and in the synchronization lottery).

❑ πe
P,n – VRF epoch proof produced by the party P for epoch en (used in the

consensus group lottery).

❑ bsync
P,j – synchronization beacon produced by party P for slot slj .

❑ T cons,k
P,n – consensus group lottery threshold (for related V k

n committee) calculated
for the party P for epoch en.

❑ T lead,k
P,n – leader lottery threshold (for related V k

n committee) calculated for the
party P for epoch en.

❑ T sync
P,n – synchronization beacon lottery threshold calculated for the party P for

epoch en.

❑ Sset
P – set of actual connected to participant P distributed systems’ ids.

❑ Tcons – set of actual consensus group lottery thresholds for different committees.

❑ Tlead – set of actual leader lottery thresholds for different committees.

❑ Tsync – set of actual synchronization lottery thresholds for different committees.

❑ Cloc – the local chain the party adopts based on which it does evaluation and
exports the ledger state.

❑ isSync – the party’s stores synchronization status.

❑ buffer – the buffer of transactions.

❑ syncBuffer – the buffer of the synchronization beacons.

❑ futureChains – a buffer to store chains that are not yet processed.

41



❑ fetchCompleted – a variable to store whether the round messages have been fetched.

❑ localTime – the party’s current local slot.

❑ lastTick – the last tick received from GPerfLClock.

❑ EpochUpdate(·) – a function table to remember which clock adjustments have been
done already.

42


	Introduction
	Related Work
	Existing Interoperability Solutions
	Chain-based Interoperability
	Bridge-based Interoperability
	dApp-based Interoperability
	Discussion


	Goals
	System Model
	Security Model Preliminaries
	External Systems
	Transaction Ledger

	System Design
	Strawman Design: PBFTNetwork
	Opening the Consensus Group
	Verifiable Random Function
	Lottery

	Replacing MACs by Digital Signatures
	Scalable Collective Signature Aggregation
	General Overview
	Aggregation Rounds and Structures
	Signature Generation
	Signature Verification
	Instantiation of Signature Aggregation

	Eliminating Validator Bottleneck
	Leader Lottery
	Syncing Shards
	Key Evolving Signature Scheme
	Forks and Integrity

	Clock Synchronization
	Decentralized On-Chain Asset Management
	Rotating Authorized Committees in Vaults

	Ledger
	Active cells
	Authenticators, Addresses and Ownership
	Terminal cells
	Transactions and Effects
	Dealing with finality of imported value

	The Full Protocol
	Bootstrapping
	Chain Extension
	Epoch Transition
	Registration


	Applications
	Decentralized Cross-Chain Oracle
	Custodial Asset Management

	Appendices
	A Complete Description of the Spectrum Protocol
	The Main Protocol
	Fetching information, stake distribution and time update
	Validity Checks
	Chain Selection Rules
	Ledger Maintenance

	List of Symbols


